BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16941449)

  • 41. Separation of double-stranded DNA fragments by capillary electrophoresis using polyvinylpyrrolidone and poly(N,N-dimethylacrylamide) transient interpenetrating network.
    Wang Y; Liang D; Hao J; Fang D; Chu B
    Electrophoresis; 2002 May; 23(10):1460-6. PubMed ID: 12116156
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-strand conformation polymorphism analysis using capillary electrophoresis.
    Larsen LA; Christiansen M; Vuust J; Andersen PS
    Curr Protoc Hum Genet; 2003 May; Chapter 7():Unit 7.12. PubMed ID: 18428343
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A two-step quantitative pathogen detection system based on capillary electrophoresis.
    Shin GW; Cho YS; Hwang HS; Park JH; Jung GY
    Anal Biochem; 2008 Dec; 383(1):31-7. PubMed ID: 18782551
    [TBL] [Abstract][Full Text] [Related]  

  • 44. QSNPlite, a software system for quantitative analysis of SNPs based on capillary array SSCP analysis.
    Tahira T; Okazaki Y; Miura K; Yoshinaga A; Masumoto K; Higasa K; Kukita Y; Hayashi K
    Electrophoresis; 2006 Oct; 27(19):3869-78. PubMed ID: 16960832
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quasi-interpenetrating network formed by polyacrylamide and poly(N,N-dimethylacrylamide) used in high-performance DNA sequencing analysis by capillary electrophoresis.
    Wang Y; Liang D; Ying Q; Chu B
    Electrophoresis; 2005 Jan; 26(1):126-36. PubMed ID: 15624193
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of CE-SSCP and DGGE for monitoring a complex microbial community remediating mine drainage.
    Hong H; Pruden A; Reardon KF
    J Microbiol Methods; 2007 Apr; 69(1):52-64. PubMed ID: 17229479
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Separation of DNA fragments and single strand conformation polymorphism analysis in bare capillaries using poly(acrylamide-dimethylacrylamide) as a separation medium.
    Ren J; Fang ZF
    J Chromatogr B Biomed Sci Appl; 2001 Sep; 761(2):139-45. PubMed ID: 11587343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estimation of SNP allele frequencies by SSCP analysis of pooled DNA.
    Tahira T; Kukita Y; Higasa K; Okazaki Y; Yoshinaga A; Hayashi K
    Methods Mol Biol; 2009; 578():193-207. PubMed ID: 19768595
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiplexing molecular diagnostics and immunoassays using emerging microarray technologies.
    Ling MM; Ricks C; Lea P
    Expert Rev Mol Diagn; 2007 Jan; 7(1):87-98. PubMed ID: 17187487
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The building of chip-based capillary electrophoresis platform and application].
    Hu H; Xiong Q; Li CX; Gao HF; Yang Q; Liang ZQ
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2007 Dec; 24(6):709-12. PubMed ID: 18067091
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Separation of DNA by capillary electrophoresis.
    McCord B; Hartzell-Baguley B; King S
    Methods Mol Biol; 2008; 384():415-29. PubMed ID: 18392577
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DNA mutation detection with chip-based temperature gradient capillary electrophoresis using a slantwise radiative heating system.
    Zhang HD; Zhou J; Xu ZR; Song J; Dai J; Fang J; Fang ZL
    Lab Chip; 2007 Sep; 7(9):1162-70. PubMed ID: 17713615
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Separation of homo- and heteroduplexes of DNA fragments with different melting temperature by capillary electrophoresis at one single temperature.
    Du M; Flanagan JH; Ma Y
    J Capill Electrophor Microchip Technol; 2007; 10(1-2):33-9. PubMed ID: 17685240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Concentration gradient used in double-stranded DNA separation by capillary electrophoresis.
    Liang D; Chu B
    Electrophoresis; 2002 Aug; 23(16):2602-9. PubMed ID: 12210163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Affinity capillary electrophoresis of DNA for detection of single-nucleotide polymorphisms and point mutations. Comprehensive study for optimization of the weak affinity.
    Sato K; Onoguchi M; Hosokawa K; Maeda M
    J Chromatogr A; 2006 Apr; 1111(2):120-6. PubMed ID: 16269148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of novel quasi-interpenetrating network/gold nanoparticles composite matrices on DNA sequencing performances by CE.
    Zhou D; Wang Y; Yang R; Zhang W; Shi R
    Electrophoresis; 2007 Aug; 28(17):2998-3007. PubMed ID: 17665373
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of a thermo-associating matrix and a liquid polymer.
    Kahlaoui N; Barbier V; Duval MA; Lefebvre F; Sudor J; Siebert R
    J Capill Electrophor Microchip Technol; 2007; 10(1-2):41-2. PubMed ID: 17685241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnetic bead-isolated single-strand DNA for SSCP analysis.
    Kasuga T; Cheng J; Mitchelson KR
    Methods Mol Biol; 2001; 163():135-47. PubMed ID: 11242939
    [No Abstract]   [Full Text] [Related]  

  • 59. Analysis of DNA polymorphisms on the human Y-chromosome by microchip electrophoresis.
    Jabasini M; Zhang L; Dang F; Xu F; Almofli MR; Ewis AA; Lee J; Nakahori Y; Baba Y
    Electrophoresis; 2002 May; 23(10):1537-42. PubMed ID: 12116166
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Designing polymer matrix for microchip-based double-stranded DNA capillary electrophoresis.
    Zhang J; He W; Liang D; Fang D; Chu B; Gassmann M
    J Chromatogr A; 2006 Jun; 1117(2):219-27. PubMed ID: 16630623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.