BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 16941589)

  • 21. Effects of VEGF loading on scaffold-confined vascularization.
    Lindhorst D; Tavassol F; von See C; Schumann P; Laschke MW; Harder Y; Bormann KH; Essig H; Kokemüller H; Kampmann A; Voss A; Mülhaupt R; Menger MD; Gellrich NC; Rücker M
    J Biomed Mater Res A; 2010 Dec; 95(3):783-92. PubMed ID: 20725981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor.
    Ho YC; Mi FL; Sung HW; Kuo PL
    Int J Pharm; 2009 Jul; 376(1-2):69-75. PubMed ID: 19450670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.
    Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S
    Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and validation of small-diameter vascular tissue from a decellularized scaffold coated with heparin and vascular endothelial growth factor.
    Zhou M; Liu Z; Wei Z; Liu C; Qiao T; Ran F; Bai Y; Jiang X; Ding Y
    Artif Organs; 2009 Mar; 33(3):230-9. PubMed ID: 19245522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A facile method to prepare heparin-functionalized nanoparticles for controlled release of growth factors.
    Chung YI; Tae G; Hong Yuk S
    Biomaterials; 2006 Apr; 27(12):2621-6. PubMed ID: 16360204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice.
    Rücker M; Laschke MW; Junker D; Carvalho C; Schramm A; Mülhaupt R; Gellrich NC; Menger MD
    Biomaterials; 2006 Oct; 27(29):5027-38. PubMed ID: 16769111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of the controlled-released basic fibroblast growth factor from chitosan-gelatin microspheres on human fibroblasts cultured on a chitosan-gelatin scaffold.
    Liu H; Fan H; Cui Y; Chen Y; Yao K; Goh JC
    Biomacromolecules; 2007 May; 8(5):1446-55. PubMed ID: 17375950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release.
    Guan J; Stankus JJ; Wagner WR
    J Control Release; 2007 Jul; 120(1-2):70-8. PubMed ID: 17509717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of protein delivery from modular polymer scaffolds.
    Lee M; Chen TT; Iruela-Arispe ML; Wu BM; Dunn JC
    Biomaterials; 2007 Apr; 28(10):1862-70. PubMed ID: 17184836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide).
    Shen H; Hu X; Bei J; Wang S
    Biomaterials; 2008 May; 29(15):2388-99. PubMed ID: 18313747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FGF-2 and VEGF functionalization of starPEG-heparin hydrogels to modulate biomolecular and physical cues of angiogenesis.
    Zieris A; Prokoph S; Levental KR; Welzel PB; Grimmer M; Freudenberg U; Werner C
    Biomaterials; 2010 Nov; 31(31):7985-94. PubMed ID: 20674970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of in vitro spermatogenesis using poly(D,L-lactic-co-glycolic acid) (PLGA)-based macroporous biodegradable scaffolds.
    Lee JH; Oh JH; Lee JH; Kim MR; Min CK
    J Tissue Eng Regen Med; 2011 Feb; 5(2):130-7. PubMed ID: 20603864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold.
    Baek CH; Ko YJ
    Laryngoscope; 2006 Oct; 116(10):1829-34. PubMed ID: 17016212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neovascularization by bFGF releasing hyaluronic acid-gelatin microspheres: in vitro and in vivo studies.
    Demirdögen B; Elçin AE; Elçin YM
    Growth Factors; 2010 Dec; 28(6):426-36. PubMed ID: 20854186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering.
    Yilgor P; Tuzlakoglu K; Reis RL; Hasirci N; Hasirci V
    Biomaterials; 2009 Jul; 30(21):3551-9. PubMed ID: 19361857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygen generating scaffolds for enhancing engineered tissue survival.
    Oh SH; Ward CL; Atala A; Yoo JJ; Harrison BS
    Biomaterials; 2009 Feb; 30(5):757-62. PubMed ID: 19019425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor.
    Li W; Lan Y; Guo R; Zhang Y; Xue W; Zhang Y
    J Biomater Appl; 2015 Jan; 29(6):882-93. PubMed ID: 25114196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers.
    Ryu W; Min SW; Hammerick KE; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ
    Biomaterials; 2007 Feb; 28(6):1174-84. PubMed ID: 17126395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Action of microparticles of heparin and alginate crosslinked gel when used as injectable artificial matrices to stabilize basic fibroblast growth factor and induce angiogenesis by controlling its release.
    Chinen N; Tanihara M; Nakagawa M; Shinozaki K; Yamamoto E; Mizushima Y; Suzuki Y
    J Biomed Mater Res A; 2003 Oct; 67(1):61-8. PubMed ID: 14517862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.