BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16941839)

  • 1. Use of group theory in the selection and description of regularization methods for functional source imaging.
    Greensite F
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1832-40. PubMed ID: 16941839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavefront-based models for inverse electrocardiography.
    Ghodrati A; Brooks DH; Tadmor G; MacLeod RS
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1821-31. PubMed ID: 16941838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional myocardial activation imaging in a rabbit model.
    Liu C; Zhang X; Liu Z; Pogwizd SM; He B
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1813-20. PubMed ID: 16941837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the inverse problem of electrocardiography using a Duncan and Horn formulation of the Kalman filter.
    Berrier KL; Sorensen DC; Khoury DS
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):507-15. PubMed ID: 15000381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two hybrid regularization frameworks for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Liu F; Crozier S
    Phys Med Biol; 2008 Sep; 53(18):5151-64. PubMed ID: 18723934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity- and effort-gain analysis: multilead ECG electrode array selection for activation time imaging.
    Hintermüller C; Seger M; Pfeifer B; Fischer G; Modre R; Tilg B
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2055-66. PubMed ID: 17019870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary element computations in the forward and inverse problems of electrocardiography: comparison of collocation and Galerkin weightings.
    Stenroos M; Haueisen J
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2124-33. PubMed ID: 18713681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of cardiac bidomain parameters from extracellular measurement: two dimensional study.
    Sadleir R; Henriquez C
    Ann Biomed Eng; 2006 Aug; 34(8):1289-303. PubMed ID: 16804743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac anisotropy: is it negligible regarding noninvasive activation time imaging?
    Modre R; Seger M; Fischer G; Hintermüller C; Hayn D; Pfeifer B; Hanser F; Schreier G; Tilg B
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):569-80. PubMed ID: 16602563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns.
    Messnarz B; Tilg B; Modre R; Fischer G; Hanser F
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):273-81. PubMed ID: 14765700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional cardiac electrical imaging from intracavity recordings.
    He B; Liu C; Zhang Y
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1454-60. PubMed ID: 17694866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of heart-surface potentials using regularized multipole sources.
    Beetner DG; Arthur RM
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1366-73. PubMed ID: 15311821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrophysiological properties.
    Ohyu S; Okamoto Y; Kuriki S
    IEEE Trans Biomed Eng; 2002 Jun; 49(6):509-19. PubMed ID: 12046695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Tang M
    Phys Med Biol; 2007 Mar; 52(5):1277-94. PubMed ID: 17301454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volume conductor effects involved in the genesis of the P wave.
    van Dam PM; van Oosterom A
    Europace; 2005 Sep; 7 Suppl 2():30-8. PubMed ID: 16102501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crosstalk between theoretical and experimental studies for the understanding of cardiac electrical impulse propagation.
    Kléber AG
    J Electrocardiol; 2007; 40(6 Suppl):S136-41. PubMed ID: 17993310
    [No Abstract]   [Full Text] [Related]  

  • 18. Some imaging parameters of the oblique dipole layer cardiac generator derivable from body surface electrical potentials.
    Greensite F
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):159-64. PubMed ID: 1612619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive reconstruction of three-dimensional ventricular activation sequence from the inverse solution of distributed equivalent current density.
    Liu Z; Liu C; He B
    IEEE Trans Med Imaging; 2006 Oct; 25(10):1307-18. PubMed ID: 17024834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model.
    Babbs CF
    Cardiovasc Eng; 2009 Jun; 9(2):59-71. PubMed ID: 19543975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.