These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 16941908)
1. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Viaud M; Fillinger S; Liu W; Polepalli JS; Le Pêcheur P; Kunduru AR; Leroux P; Legendre L Mol Plant Microbe Interact; 2006 Sep; 19(9):1042-50. PubMed ID: 16941908 [TBL] [Abstract][Full Text] [Related]
2. The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Liu W; Leroux P; Fillinger S Fungal Genet Biol; 2008 Jul; 45(7):1062-74. PubMed ID: 18495505 [TBL] [Abstract][Full Text] [Related]
3. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Rui O; Hahn M Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443 [TBL] [Abstract][Full Text] [Related]
4. Detection and Molecular Characterization of Resistance to the Dicarboximide and Benzamide Fungicides in Botrytis cinerea From Tomato in Hubei Province, China. Adnan M; Hamada MS; Li GQ; Luo CX Plant Dis; 2018 Jul; 102(7):1299-1306. PubMed ID: 30673571 [TBL] [Abstract][Full Text] [Related]
5. The group III two-component histidine kinase AlHK1 is involved in fungicides resistance, osmosensitivity, spore production and impacts negatively pathogenicity in Alternaria longipes. Luo YY; Yang JK; Zhu ML; Liu CJ; Li HY; Lu ZB; Pan WZ; Zhang ZH; Bi W; Zhang KQ Curr Microbiol; 2012 May; 64(5):449-56. PubMed ID: 22349956 [TBL] [Abstract][Full Text] [Related]
6. Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. Fillinger S; Ajouz S; Nicot PC; Leroux P; Bardin M PLoS One; 2012; 7(8):e42520. PubMed ID: 22912706 [TBL] [Abstract][Full Text] [Related]
7. Binding Mode and Molecular Mechanism of the Two-Component Histidine Kinase Bos1 of Yin X; Li P; Wang Z; Wang J; Fang A; Tian B; Yang Y; Yu Y; Bi C Phytopathology; 2024 Apr; 114(4):770-779. PubMed ID: 38598410 [TBL] [Abstract][Full Text] [Related]
8. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Zhang Z; Qin G; Li B; Tian S Mol Plant Microbe Interact; 2014 Jun; 27(6):590-600. PubMed ID: 24520899 [TBL] [Abstract][Full Text] [Related]
9. Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry. Grabke A; Fernández-Ortuño D; Amiri A; Li X; Peres NA; Smith P; Schnabel G Phytopathology; 2014 Apr; 104(4):396-402. PubMed ID: 24156554 [TBL] [Abstract][Full Text] [Related]
10. Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with several sdhB and the cytb G143A mutations. Veloukas T; Kalogeropoulou P; Markoglou AN; Karaoglanidis GS Phytopathology; 2014 Apr; 104(4):347-56. PubMed ID: 24168041 [TBL] [Abstract][Full Text] [Related]
11. Fitness measurement reveals contrasting costs in homologous recombinant mutants of Botrytis cinerea resistant to succinate dehydrogenase inhibitors. Lalève A; Fillinger S; Walker AS Fungal Genet Biol; 2014 Jun; 67():24-36. PubMed ID: 24694728 [TBL] [Abstract][Full Text] [Related]
12. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Yan L; Yang Q; Sundin GW; Li H; Ma Z Fungal Genet Biol; 2010 Sep; 47(9):753-60. PubMed ID: 20595070 [TBL] [Abstract][Full Text] [Related]
13. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. Choquer M; Fournier E; Kunz C; Levis C; Pradier JM; Simon A; Viaud M FEMS Microbiol Lett; 2007 Dec; 277(1):1-10. PubMed ID: 17986079 [TBL] [Abstract][Full Text] [Related]
14. The Autophagy Gene Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212 [TBL] [Abstract][Full Text] [Related]
15. A new point mutation (D1158N) in histidine kinase Bos1 confers high-level resistance to fludioxonil in field gray mold disease. Ren W; Han W; Huan T; Zhu M; Zhang Y; Li B; Liu N Pestic Biochem Physiol; 2024 Jan; 198():105750. PubMed ID: 38225093 [TBL] [Abstract][Full Text] [Related]
16. Stability and fitness of pyraclostrobin- and boscalid-resistant phenotypes in field isolates of Botrytis cinerea from apple. Kim YK; Xiao CL Phytopathology; 2011 Nov; 101(11):1385-91. PubMed ID: 21692646 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Botrytis cinerea isolates collected on pepper in Southern Turkey by using molecular markers, fungicide resistance genes and virulence assay. Polat İ; Baysal Ö; Mercati F; Gümrükcü E; Sülü G; Kitapcı A; Araniti F; Carimi F Infect Genet Evol; 2018 Jun; 60():151-159. PubMed ID: 29505818 [TBL] [Abstract][Full Text] [Related]
18. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573 [TBL] [Abstract][Full Text] [Related]
19. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment. Castillo L; Plaza V; Larrondo LF; Canessa P Curr Protein Pept Sci; 2017; 18(10):976-989. PubMed ID: 27526927 [TBL] [Abstract][Full Text] [Related]
20. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]