BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 16942112)

  • 1. Hybrid quantum mechanics/molecular mechanics simulations with two-dimensional interpolated corrections: application to enzymatic processes.
    Ruiz-Pernía JJ; Silla E; Tuñón I; Martí S
    J Phys Chem B; 2006 Sep; 110(35):17663-70. PubMed ID: 16942112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation free energy of catechol O-methyltransferase. Corrections to the potential of mean force.
    Roca M; Moliner V; Ruiz-Pernía JJ; Silla E; Tuñón I
    J Phys Chem A; 2006 Jan; 110(2):503-9. PubMed ID: 16405322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase.
    Crespo A; Martí MA; Estrin DA; Roitberg AE
    J Am Chem Soc; 2005 May; 127(19):6940-1. PubMed ID: 15884923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing protein environment in an enzymatic process: All-electron quantum chemical analysis combined with ab initio quantum mechanical/molecular mechanical modeling of chorismate mutase.
    Ishida T
    J Chem Phys; 2008 Sep; 129(12):125105. PubMed ID: 19045066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of claisen and cope rearrangements catalyzed by chorismate mutase. An insight into enzymatic efficiency: transition state stabilization or substrate preorganization?
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    J Am Chem Soc; 2004 Jan; 126(1):311-9. PubMed ID: 14709097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.
    Gao J; Major DT; Fan Y; Lin YL; Ma S; Wong KY
    Methods Mol Biol; 2008; 443():37-62. PubMed ID: 18446281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computing kinetic isotope effects for chorismate mutase with high accuracy. A new DFT/MM strategy.
    Martí S; Moliner V; Tuñón I; Williams IH
    J Phys Chem B; 2005 Mar; 109(9):3707-10. PubMed ID: 16851412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction.
    Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ
    Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase.
    Roca M; Martí S; Andrés J; Moliner V; Tuñón I; Bertrán J; Williams IH
    J Am Chem Soc; 2003 Jun; 125(25):7726-37. PubMed ID: 12812514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical insights in enzyme catalysis.
    Martí S; Roca M; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chem Soc Rev; 2004 Feb; 33(2):98-107. PubMed ID: 14767505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A definitive mechanism for chorismate mutase.
    Zhang X; Zhang X; Bruice TC
    Biochemistry; 2005 Aug; 44(31):10443-8. PubMed ID: 16060652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QM/MM methods for biomolecular systems.
    Senn HM; Thiel W
    Angew Chem Int Ed Engl; 2009; 48(7):1198-229. PubMed ID: 19173328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations.
    Heyden A; Lin H; Truhlar DG
    J Phys Chem B; 2007 Mar; 111(9):2231-41. PubMed ID: 17288477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of chorismate mutase catalysis by QM/MM modelling of enzyme-catalysed and uncatalysed reactions.
    Claeyssens F; Ranaghan KE; Lawan N; Macrae SJ; Manby FR; Harvey JN; Mulholland AJ
    Org Biomol Chem; 2011 Mar; 9(5):1578-90. PubMed ID: 21243152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating boundary dependent errors in QM/MM simulations.
    Solt I; Kulhánek P; Simon I; Winfield S; Payne MC; Csányi G; Fuxreiter M
    J Phys Chem B; 2009 Apr; 113(17):5728-35. PubMed ID: 19341253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the nature of the transition state in catechol O-methyltransferase. A complementary study based on molecular dynamics and potential energy surface explorations.
    Roca M; Andrés J; Moliner V; Tuñón I; Bertrán J
    J Am Chem Soc; 2005 Aug; 127(30):10648-55. PubMed ID: 16045352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of conformational compression and preferential transition state stabilization to the rate enhancement by chorismate mutase.
    Guimarães CR; Repasky MP; Chandrasekhar J; Tirado-Rives J; Jorgensen WL
    J Am Chem Soc; 2003 Jun; 125(23):6892-9. PubMed ID: 12783541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All electron quantum chemical calculation of the entire enzyme system confirms a collective catalytic device in the chorismate mutase reaction.
    Ishida T; Fedorov DG; Kitaura K
    J Phys Chem B; 2006 Jan; 110(3):1457-63. PubMed ID: 16471697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implicit versus explicit solvent in free energy calculations of enzyme catalysis: Methyl transfer catalyzed by catechol O-methyltransferase.
    Rod TH; Rydberg P; Ryde U
    J Chem Phys; 2006 May; 124(17):174503. PubMed ID: 16689579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.