These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Nonperturbative time-convolutionless quantum master equation from the path integral approach. Nan G; Shi Q; Shuai Z J Chem Phys; 2009 Apr; 130(13):134106. PubMed ID: 19355716 [TBL] [Abstract][Full Text] [Related]
5. A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation. Mulvihill E; Schubert A; Sun X; Dunietz BD; Geva E J Chem Phys; 2019 Jan; 150(3):034101. PubMed ID: 30660163 [TBL] [Abstract][Full Text] [Related]
6. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model. Xu M; Yan Y; Liu Y; Shi Q J Chem Phys; 2018 Apr; 148(16):164101. PubMed ID: 29716231 [TBL] [Abstract][Full Text] [Related]
7. A derivation of the mixed quantum-classical Liouville equation from the influence functional formalism. Shi Q; Geva E J Chem Phys; 2004 Aug; 121(8):3393-404. PubMed ID: 15303902 [TBL] [Abstract][Full Text] [Related]
9. Influence of temperature on coherent dynamics of a two-level system immersed in a dissipative spin bath. Lü Z; Zheng H J Chem Phys; 2009 Oct; 131(13):134503. PubMed ID: 19814562 [TBL] [Abstract][Full Text] [Related]
10. Efficient hierarchical Liouville space propagator to quantum dissipative dynamics. Shi Q; Chen L; Nan G; Xu RX; Yan Y J Chem Phys; 2009 Feb; 130(8):084105. PubMed ID: 19256595 [TBL] [Abstract][Full Text] [Related]
11. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. Jin J; Zheng X; Yan Y J Chem Phys; 2008 Jun; 128(23):234703. PubMed ID: 18570515 [TBL] [Abstract][Full Text] [Related]
12. Proton transfer reactions in model condensed-phase environments: Accurate quantum dynamics using the multilayer multiconfiguration time-dependent Hartree approach. Craig IR; Thoss M; Wang H J Chem Phys; 2007 Oct; 127(14):144503. PubMed ID: 17935405 [TBL] [Abstract][Full Text] [Related]
13. Exact quantum master equation via the calculus on path integrals. Xu RX; Cui P; Li XQ; Mo Y; Yan Y J Chem Phys; 2005 Jan; 122(4):41103. PubMed ID: 15740228 [TBL] [Abstract][Full Text] [Related]
14. Quantum rate dynamics for proton transfer reactions in condensed phase: the exact hierarchical equations of motion approach. Chen L; Shi Q J Chem Phys; 2009 Apr; 130(13):134505. PubMed ID: 19355749 [TBL] [Abstract][Full Text] [Related]
15. Resummed memory kernels in generalized system-bath master equations. Mavros MG; Van Voorhis T J Chem Phys; 2014 Aug; 141(5):054112. PubMed ID: 25106575 [TBL] [Abstract][Full Text] [Related]
16. The non-Markovian quantum master equation in the collective-mode representation: application to barrier crossing in the intermediate friction regime. Pomyalov A; Tannor DJ J Chem Phys; 2005 Nov; 123(20):204111. PubMed ID: 16351244 [TBL] [Abstract][Full Text] [Related]
17. Markovian approximation in the relaxation of open quantum systems. Cheng YC; Silbey RJ J Phys Chem B; 2005 Nov; 109(45):21399-405. PubMed ID: 16853776 [TBL] [Abstract][Full Text] [Related]
18. Effectiveness of perturbation theory approaches for computing non-condon electron transfer dynamics in condensed phases. Cook WR; Coalson RD; Evans DG J Phys Chem B; 2009 Aug; 113(33):11437-47. PubMed ID: 19630413 [TBL] [Abstract][Full Text] [Related]
19. Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions. Montoya-Castillo A; Reichman DR J Chem Phys; 2017 Feb; 146(8):084110. PubMed ID: 28249417 [TBL] [Abstract][Full Text] [Related]
20. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model. Kidon L; Wilner EY; Rabani E J Chem Phys; 2015 Dec; 143(23):234110. PubMed ID: 26696049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]