These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16942244)

  • 61. Molecular dynamics with time dependent quantum Monte Carlo.
    Christov IP
    J Chem Phys; 2008 Dec; 129(21):214107. PubMed ID: 19063544
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On the performance of quantum chemical methods to predict solvatochromic effects: the case of acrolein in aqueous solution.
    Aidas K; Møgelhoj A; Nilsson EJ; Johnson MS; Mikkelsen KV; Christiansen O; Söderhjelm P; Kongsted J
    J Chem Phys; 2008 May; 128(19):194503. PubMed ID: 18500876
    [TBL] [Abstract][Full Text] [Related]  

  • 63. pi --> n fluorescence transition in formaldehyde in aqueous solution: a combined quantum chemical statistical mechanical study.
    Ohrn A; Karlström G
    J Phys Chem A; 2006 Feb; 110(5):1934-42. PubMed ID: 16451027
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Coupling quantum Monte Carlo to a nonlinear polarizable continuum model for spherical solutes.
    Amovilli C; Filippi C; Floris FM
    J Phys Chem B; 2006 Dec; 110(51):26225-31. PubMed ID: 17181280
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantum effects in liquid water from an ab initio-based polarizable force field.
    Paesani F; Iuchi S; Voth GA
    J Chem Phys; 2007 Aug; 127(7):074506. PubMed ID: 17718619
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Efficient linear-scaling calculation of response properties: density matrix-based Laplace-transformed coupled-perturbed self-consistent field theory.
    Beer M; Ochsenfeld C
    J Chem Phys; 2008 Jun; 128(22):221102. PubMed ID: 18553999
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Solvatochromic shift of donor-acceptor substituted bithiophene in solvents of different polarity: quantum chemical and molecular dynamics simulations.
    Meng S; Ma J
    J Phys Chem B; 2008 Apr; 112(14):4313-22. PubMed ID: 18336016
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A self-consistent reaction field model of solvation using distributed multipoles. I. Energy and energy derivatives.
    Rinaldi D; Bouchy A; Rivail JL; Dillet V
    J Chem Phys; 2004 Feb; 120(5):2343-50. PubMed ID: 15268373
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models.
    Kamerlin SC; Haranczyk M; Warshel A
    Chemphyschem; 2009 May; 10(7):1125-34. PubMed ID: 19301306
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamic polarizability, Cauchy moments, and the optical absorption spectrum of liquid water: a sequential molecular dynamics/quantum mechanical approach.
    Mata RA; Cabral BJ; Millot C; Coutinho K; Canuto S
    J Chem Phys; 2009 Jan; 130(1):014505. PubMed ID: 19140620
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A quantum equation of motion for chemical reaction systems on an adiabatic double-well potential surface in solution based on the framework of mixed quantum-classical molecular dynamics.
    Yamada A; Okazaki S
    J Chem Phys; 2008 Jan; 128(4):044507. PubMed ID: 18247969
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Solvent effects on NMR isotropic shielding constants. a comparison between explicit polarizable discrete and continuum approaches.
    Aidas K; Møgelhøj A; Kjaer H; Nielsen CB; Mikkelsen KV; Ruud K; Christiansen O; Kongsted J
    J Phys Chem A; 2007 May; 111(20):4199-210. PubMed ID: 17474726
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Combining a polarizable force-field and a coarse-grained polarizable solvent model: application to long dynamics simulations of bovine pancreatic trypsin inhibitor.
    Masella M; Borgis D; Cuniasse P
    J Comput Chem; 2008 Aug; 29(11):1707-24. PubMed ID: 18351600
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An integral equation theory for inhomogeneous molecular fluids: the reference interaction site model approach.
    Ishizuka R; Chong SH; Hirata F
    J Chem Phys; 2008 Jan; 128(3):034504. PubMed ID: 18205507
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: a novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation.
    Takahashi H; Ohno H; Kishi R; Nakano M; Matubayasi N
    J Chem Phys; 2008 Nov; 129(20):205103. PubMed ID: 19045881
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A fully self-consistent treatment of collective fluctuations in quantum liquids.
    Rabani E; Reichman DR
    J Chem Phys; 2004 Jan; 120(3):1458-65. PubMed ID: 15268271
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The structure of the hydrated electron. Part 2. A mixed quantum/classical molecular dynamics embedded cluster density functional theory: single-excitation configuration interaction study.
    Shkrob IA; Glover WJ; Larsen RE; Schwartz BJ
    J Phys Chem A; 2007 Jun; 111(24):5232-43. PubMed ID: 17530823
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Couplings between electronic transitions in a subsystem formulation of time-dependent density functional theory.
    Neugebauer J
    J Chem Phys; 2007 Apr; 126(13):134116. PubMed ID: 17430025
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Time dependent density functional theory investigation of the resonance Raman properties of the julolidinemalononitrile push-pull chromophore in various solvents.
    Guthmuller J; Champagne B
    J Chem Phys; 2007 Oct; 127(16):164507. PubMed ID: 17979360
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Excess electron relaxation dynamics at water/air interfaces.
    Madarász A; Rossky PJ; Turi L
    J Chem Phys; 2007 Jun; 126(23):234707. PubMed ID: 17600435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.