These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16942349)

  • 1. Fragility and thermodynamics in nonpolymeric glass-forming liquids.
    Wang LM; Angell CA; Richert R
    J Chem Phys; 2006 Aug; 125(7):074505. PubMed ID: 16942349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between thermodynamic and kinetic fragilities in nonpolymeric glass-forming liquids.
    Senkov ON; Miracle DB
    J Chem Phys; 2008 Mar; 128(12):124508. PubMed ID: 18376944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enthalpy relaxation upon glass transition and kinetic fragility of molecular liquids.
    Wang LM
    J Phys Chem B; 2009 Apr; 113(15):5168-71. PubMed ID: 19267441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between glass-forming ability and fragility of pharmaceutical compounds.
    Kawakami K; Harada T; Yoshihashi Y; Yonemochi E; Terada K; Moriyama H
    J Phys Chem B; 2015 Apr; 119(14):4873-80. PubMed ID: 25781503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of structural glasses and supercooled liquids.
    Lubchenko V; Wolynes PG
    Annu Rev Phys Chem; 2007; 58():235-66. PubMed ID: 17067282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why glass elasticity affects the thermodynamics and fragility of supercooled liquids.
    Yan L; Düring G; Wyart M
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6307-12. PubMed ID: 23576746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic basis for cluster kinetics: Prediction of the fragility of marginal metallic glass-forming liquids.
    Hu L; Bian X; Qin X; Yue Y; Zhao Y; Wang C
    J Phys Chem B; 2006 Nov; 110(43):21950-7. PubMed ID: 17064164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A thermodynamic connection to the fragility of glass-forming liquids.
    Martinez LM; Angell CA
    Nature; 2001 Apr; 410(6829):663-7. PubMed ID: 11287947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of nucleic acid stability: the effect of DeltaCP.
    Tikhomirova A; Taulier N; Chalikian TV
    J Am Chem Soc; 2004 Dec; 126(50):16387-94. PubMed ID: 15600340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaussian excitations model for glass-former dynamics and thermodynamics.
    Matyushov DV; Angell CA
    J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of glass-forming liquids. XV. Dynamical features of molecular liquids that form ultra-stable glasses by vapor deposition.
    Chen Z; Richert R
    J Chem Phys; 2011 Sep; 135(12):124515. PubMed ID: 21974543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An upper limit to kinetic fragility in glass-forming liquids.
    Wang LM; Mauro JC
    J Chem Phys; 2011 Jan; 134(4):044522. PubMed ID: 21280763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetic fragility of liquids as manifestation of the elastic softening.
    Puosi F; Leporini D
    Eur Phys J E Soft Matter; 2015 Aug; 38(8):87. PubMed ID: 26261070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boiling temperature as a scaling parameter for the microscopic relaxation dynamics in molecular liquids.
    Mamontov E
    J Phys Chem B; 2013 Aug; 117(32):9501-7. PubMed ID: 23869489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network.
    Galimzyanov BN; Doronina MA; Mokshin AV
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass transition dynamics and boiling temperatures of molecular liquids and their isomers.
    Wang LM; Richert R
    J Phys Chem B; 2007 Mar; 111(12):3201-7. PubMed ID: 17388430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature Dependence of Structural Relaxation in Glass-Forming Liquids and Polymers.
    Novikov VN; Sokolov AP
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy landscape, antiplasticization, and polydispersity induced crossover of heterogeneity in supercooled polydisperse liquids.
    Abraham SE; Bhattacharrya SM; Bagchi B
    Phys Rev Lett; 2008 Apr; 100(16):167801. PubMed ID: 18518247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experiment-guided thermodynamic simulations on reversible two-state proteins: implications for protein thermostability.
    Kumar S; Nussinov R
    Biophys Chem; 2004 Nov; 111(3):235-46. PubMed ID: 15501567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kauzmann's paradox and the glass transition.
    Speedy RJ
    Biophys Chem; 2003 Sep; 105(2-3):411-20. PubMed ID: 14499908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.