These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16942361)

  • 1. Solute-solvent contact by intermolecular cross relaxation. I. The nature of the water-hydrophobic interface.
    Nordstierna L; Yushmanov PV; Furó I
    J Chem Phys; 2006 Aug; 125(7):074704. PubMed ID: 16942361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solute-solvent contact by intermolecular cross-relaxation. 2. The water-micelle interface and the micellar interior.
    Nordstierna L; Yushmanov PV; Furó I
    J Phys Chem B; 2006 Dec; 110(51):25775-81. PubMed ID: 17181220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective solvent interactions in a fluorous reaction system.
    Gerig JT
    J Am Chem Soc; 2005 Jun; 127(25):9277-84. PubMed ID: 15969610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear spin relaxation driven by intermolecular dipolar interactions: the role of solute-solvent pair correlations in the modeling of spectral density functions.
    Frezzato D; Rastrelli F; Bagno A
    J Phys Chem B; 2006 Mar; 110(11):5676-89. PubMed ID: 16539513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consequences of (129)Xe-(1)H cross relaxation in aqueous solutions.
    Stith A; Hitchens TK; Hinton DP; Berr SS; Driehuys B; Brookeman JR; Bryant RG
    J Magn Reson; 1999 Aug; 139(2):225-31. PubMed ID: 10423359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular Overhauser effects in fluoroalcohol solutions of cyclo-alanylglycine.
    Strickler MA; Gerig JT
    Biopolymers; 2002 Aug; 64(5):227-35. PubMed ID: 12115130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of water spin-spin relaxation rate to probe the solvation of cyclodextrins in aqueous solutions.
    Sabadini E; do Carmo Egídio F; Fujiwara FY; Cosgrove T
    J Phys Chem B; 2008 Mar; 112(11):3328-32. PubMed ID: 18303884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions.
    Athawale MV; Sarupria S; Garde S
    J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-surfactant contact studied by 19F-1H heteronuclear overhauser effect spectroscopy.
    Raulet R; Furo I; Brondeau J; Diter B; Canet D
    J Magn Reson; 1998 Aug; 133(2):324-9. PubMed ID: 9716475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the influence of solute-solvent interactions on the vibrational energy relaxation dynamics of large molecules in liquids.
    Pigliucci A; Duvanel G; Daku LM; Vauthey E
    J Phys Chem A; 2007 Jul; 111(28):6135-45. PubMed ID: 17591756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent interactions with the Trp-cage peptide in 35% ethanol-water.
    Neuman RC; Gerig JT
    Biopolymers; 2008 Oct; 89(10):862-72. PubMed ID: 18506810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solute-solvent interactions probed by intermolecular NOEs.
    Gerig JT
    J Org Chem; 2003 Jun; 68(13):5244-8. PubMed ID: 12816484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal signature of hydrophobic hydration dynamics.
    Qvist J; Halle B
    J Am Chem Soc; 2008 Aug; 130(31):10345-53. PubMed ID: 18624406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of ethanol-peptide and water-peptide interactions through intermolecular nuclear overhauser effects and molecular dynamics simulations.
    Gerig JT
    J Phys Chem B; 2013 May; 117(17):4880-92. PubMed ID: 23477637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local measures of intermolecular free energies in solution.
    Teng CL; Martini S; Bryant RG
    J Am Chem Soc; 2004 Nov; 126(46):15253-7. PubMed ID: 15548022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and parametric optimization of 1H off-resonance relaxation NMR experiments designed to map polypeptide self-recognition and other noncovalent interactions.
    Milojevic J; Esposito V; Das R; Melacini G
    J Phys Chem B; 2006 Oct; 110(41):20664-70. PubMed ID: 17034257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal water molecules and magnetic relaxation in agarose gels.
    Chavez FV; Persson E; Halle B
    J Am Chem Soc; 2006 Apr; 128(14):4902-10. PubMed ID: 16594727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative measurement of longitudinal and transverse cross-relaxation rates: an application to the analysis of the internal dynamics of ranalexin in water and trifluoroethanol.
    Malliavin TE; Desvaux H; Aumelas A; Chavanieu A; Delsuc MA
    J Magn Reson; 1999 Sep; 140(1):189-99. PubMed ID: 10479562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solute rotational dynamics at the water liquid/vapor interface.
    Benjamin I
    J Chem Phys; 2007 Nov; 127(20):204712. PubMed ID: 18052451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen accessibility to ribonuclease a: quantitative interpretation of nuclear spin relaxation induced by a freely diffusing paramagnet.
    Teng CL; Hinderliter B; Bryant RG
    J Phys Chem A; 2006 Jan; 110(2):580-8. PubMed ID: 16405330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.