These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 16942362)
21. CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates. Nagasaka M; Kondoh H; Nakai I; Ohta T J Chem Phys; 2007 Jan; 126(4):044704. PubMed ID: 17286496 [TBL] [Abstract][Full Text] [Related]
22. Effects of defects on thermal decomposition of HMX via ReaxFF molecular dynamics simulations. Zhou TT; Huang FL J Phys Chem B; 2011 Jan; 115(2):278-87. PubMed ID: 21142162 [TBL] [Abstract][Full Text] [Related]
23. Kinetic Monte Carlo simulations of the interaction of oxygen with Pt(111). Sendner C; Gross A J Chem Phys; 2007 Jul; 127(1):014704. PubMed ID: 17627361 [TBL] [Abstract][Full Text] [Related]
24. Monte Carlo simulations of single crystals from polymer solutions. Zhang J; Muthukumar M J Chem Phys; 2007 Jun; 126(23):234904. PubMed ID: 17600443 [TBL] [Abstract][Full Text] [Related]
25. Kinetic study of the "surface explosion" phenomenon in the NO+CO reaction on Pt(100) through dynamic Monte Carlo simulation. Alas SJ; Vicente L J Chem Phys; 2008 Apr; 128(13):134705. PubMed ID: 18397092 [TBL] [Abstract][Full Text] [Related]
26. Inhomogeneous decomposition of ultrathin oxide films on Si(100): application of Avrami kinetics to thermal desorption spectra. Kinefuchi I; Yamaguchi H; Sakiyama Y; Takagi S; Matsumoto Y J Chem Phys; 2008 Apr; 128(16):164712. PubMed ID: 18447484 [TBL] [Abstract][Full Text] [Related]
27. N+NO reaction on Rh(111) surfaces studied with fast near-edge X-ray absorption fine structure spectroscopy: role of NO dimer as an extrinsic precursor. Nakai I; Kondoh H; Shimada T; Nagasaka M; Yokota R; Amemiya K; Orita H; Ohta T J Phys Chem B; 2006 Dec; 110(51):25578-81. PubMed ID: 17181188 [TBL] [Abstract][Full Text] [Related]
28. Mechanism and kinetics of direct N2O decomposition over Fe-MFI zeolites with different iron speciation from temporal analysis of products. Kondratenko EV; Pérez-Ramírez J J Phys Chem B; 2006 Nov; 110(45):22586-95. PubMed ID: 17092005 [TBL] [Abstract][Full Text] [Related]
29. Molecular dynamics study to identify the reactive sites of a liquid squalane surface. Köhler SP; Reed SK; Westacott RE; McKendrick KG J Phys Chem B; 2006 Jun; 110(24):11717-24. PubMed ID: 16800468 [TBL] [Abstract][Full Text] [Related]
30. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy. Paganetti H; Jiang H; Parodi K; Slopsema R; Engelsman M Phys Med Biol; 2008 Sep; 53(17):4825-53. PubMed ID: 18701772 [TBL] [Abstract][Full Text] [Related]
31. Nitric oxide decomposition on small rhodium clusters, Rh(n)+/-. Anderson ML; Ford MS; Derrick PJ; Drewello T; Woodruff DP; Mackenzie SR J Phys Chem A; 2006 Sep; 110(38):10992-1000. PubMed ID: 16986831 [TBL] [Abstract][Full Text] [Related]
32. NO and dichloroethene reactivity on single crystal and supported Cu nanoparticles: just how big is the materials gap? Haq S; Raval R Phys Chem Chem Phys; 2007 Jul; 9(27):3641-7. PubMed ID: 17612728 [TBL] [Abstract][Full Text] [Related]
33. The multiple depletion curves method provides accurate estimates of intrinsic clearance (CLint), maximum velocity of the metabolic reaction (Vmax), and Michaelis constant (Km): accuracy and robustness evaluated through experimental data and Monte Carlo simulations. Sjögren E; Lennernäs H; Andersson TB; Gråsjö J; Bredberg U Drug Metab Dispos; 2009 Jan; 37(1):47-58. PubMed ID: 18824525 [TBL] [Abstract][Full Text] [Related]
34. Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations. Wang G; Van Hove MA; Ross PN; Baskes MI J Phys Chem B; 2005 Jun; 109(23):11683-92. PubMed ID: 16852434 [TBL] [Abstract][Full Text] [Related]
35. Structure and speciation in hydrous silica melts. 2. Pressure effects. Anderson KE; Grauvilardell LC; Hirschmann MM; Siepmann JI J Phys Chem B; 2008 Oct; 112(41):13015-21. PubMed ID: 18811184 [TBL] [Abstract][Full Text] [Related]
36. Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm. Newhauser W; Fontenot J; Zheng Y; Polf J; Titt U; Koch N; Zhang X; Mohan R Phys Med Biol; 2007 Aug; 52(15):4569-84. PubMed ID: 17634651 [TBL] [Abstract][Full Text] [Related]
37. Entropy-energy decomposition from nonequilibrium work trajectories. Nummela J; Yassin F; Andricioaei I J Chem Phys; 2008 Jan; 128(2):024104. PubMed ID: 18205440 [TBL] [Abstract][Full Text] [Related]
38. Phase behavior of elemental aluminum using monte carlo simulations. Bhatt D; Schultz NE; Jasper AW; Siepmann JI; Truhlar DG J Phys Chem B; 2006 Dec; 110(51):26135-42. PubMed ID: 17181268 [TBL] [Abstract][Full Text] [Related]
39. Experimental measurements and Monte Carlo simulations for dosimetric evaluations of intrafraction motion for gated and ungated intensity modulated arc therapy deliveries. Oliver M; Gladwish A; Staruch R; Craig J; Gaede S; Chen J; Wong E Phys Med Biol; 2008 Nov; 53(22):6419-36. PubMed ID: 18941277 [TBL] [Abstract][Full Text] [Related]
40. Phase equilibria of molecular fluids via hybrid Monte Carlo Wang-Landau simulations: applications to benzene and n-alkanes. Desgranges C; Delhommelle J J Chem Phys; 2009 Jun; 130(24):244109. PubMed ID: 19566144 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]