These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16942379)

  • 1. A Brownian dynamics-finite element method for simulating DNA electrophoresis in nonhomogeneous electric fields.
    Kim JM; Doyle PS
    J Chem Phys; 2006 Aug; 125(7):074906. PubMed ID: 16942379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A boundary element method/Brownian dynamics approach for simulating DNA electrophoresis in electrically insulating microfabricated devices.
    Cho J; Kenward M; Dorfman KD
    Electrophoresis; 2009 May; 30(9):1482-9. PubMed ID: 19350540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and numerical simulation of a DNA electrophoretic stretching device.
    Kim JM; Doyle PS
    Lab Chip; 2007 Feb; 7(2):213-25. PubMed ID: 17268624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS).
    Htet AT; Saturnino GB; Burnham EH; Noetscher GM; Nummenmaa A; Makarov SN
    J Neural Eng; 2019 Apr; 16(2):024001. PubMed ID: 30605893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule DNA dynamics in tapered contraction-expansion microchannels under electrophoresis.
    Hu X; Wang S; Lee LJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041911. PubMed ID: 19518260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of gel electrophoresis of DNA knots in weak and strong electric fields.
    Weber C; Stasiak A; De Los Rios P; Dietler G
    Biophys J; 2006 May; 90(9):3100-5. PubMed ID: 16473912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA electrophoresis in a sparse ordered post array.
    Ou J; Cho J; Olson DW; Dorfman KD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061904. PubMed ID: 19658521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPU-based acceleration of computations in nonlinear finite element deformation analysis.
    Mafi R; Sirouspour S
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):365-81. PubMed ID: 24166875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian dynamics simulations with stiff finitely extensible nonlinear elastic-Fraenkel springs as approximations to rods in bead-rod models.
    Hsieh CC; Jain S; Larson RG
    J Chem Phys; 2006 Jan; 124(4):044911. PubMed ID: 16460216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-state migration of DNA in a structured microchannel.
    Streek M; Schmid F; Duong TT; Anselmetti D; Ros A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):011905. PubMed ID: 15697628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brownian dynamics simulations of electrophoretic DNA separations in a sparse ordered post array.
    Cho J; Dorfman KD
    J Chromatogr A; 2010 Aug; 1217(34):5522-8. PubMed ID: 20650462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid finite element method for describing the electrical response of biological cells to applied fields.
    Ying W; Henriquez CS
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):611-20. PubMed ID: 17405368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Brownian dynamics simulation of DNA molecules with hydrodynamic interactions in linear flows.
    Fu SP; Young YN; Jiang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063008. PubMed ID: 26172793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of direct current dielectrophoresis on the trajectory of a non-conducting colloidal sphere in a bent pore.
    House DL; Luo H
    Electrophoresis; 2011 Nov; 32(22):3277-85. PubMed ID: 22028275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-phase electro-hydrodynamic flow modeling by a conservative level set model.
    Lin Y
    Electrophoresis; 2013 Mar; 34(5):736-44. PubMed ID: 23161380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation guided design of a microfluidic device for electrophoretic stretching of DNA.
    Hsieh CC; Lin TH; Huang CD
    Biomicrofluidics; 2012; 6(4):44105. PubMed ID: 24155866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tethered DNA dynamics in shear flow.
    Zhang Y; Donev A; Weisgraber T; Alder BJ; Graham MD; de Pablo JJ
    J Chem Phys; 2009 Jun; 130(23):234902. PubMed ID: 19548751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of particle interactions in DNA-laden flows at the microscale.
    Trebotichy D; Millerz GH; Bybee MD
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6670-3. PubMed ID: 17959482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of DNA sample preconcentration in microdevice electrophoresis.
    Srivastava A; Metaxas AC; So P; Matsudaira P; Ehrlich D; Georghiou GE
    Electrophoresis; 2005 Mar; 26(6):1130-43. PubMed ID: 15704245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.