These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 16943026)
1. Modeling the influence of electron beam irradiation on the heat resistance of Bacillus cereus spores. Valero M; Sarrías JA; Alvarez D; Salmerón MC Food Microbiol; 2006 Jun; 23(4):367-71. PubMed ID: 16943026 [TBL] [Abstract][Full Text] [Related]
2. Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll. Byrne B; Dunne G; Bolton DJ Food Microbiol; 2006 Dec; 23(8):803-8. PubMed ID: 16943086 [TBL] [Abstract][Full Text] [Related]
3. Modeling the irradiation followed by heat inactivation of Salmonella inoculated in liquid whole egg. Alvarez I; Niemira BA; Fan X; Sommers CH J Food Sci; 2007 Jun; 72(5):M145-52. PubMed ID: 17995736 [TBL] [Abstract][Full Text] [Related]
4. Quantifying the combined effects of the heating time, the temperature and the recovery medium pH on the regrowth lag time of Bacillus cereus spores after a heat treatment. Gaillard S; Leguérinel I; Savy N; Mafart P Int J Food Microbiol; 2005 Nov; 105(1):53-8. PubMed ID: 16055220 [TBL] [Abstract][Full Text] [Related]
5. Use of sensitivity analysis to aid interpretation of a probabilistic Bacillus cereus spore lag time model applied to heat-treated chilled foods (REPFEDs). Membré JM; Kan-King-Yu D; Blackburn Cde W Int J Food Microbiol; 2008 Nov; 128(1):28-33. PubMed ID: 18691785 [TBL] [Abstract][Full Text] [Related]
6. [Heat treatment for the control of Bacillus cereus spores in foods]. Tanaka K; Motoi H; Hara-Kudo Y Shokuhin Eiseigaku Zasshi; 2005 Feb; 46(1):1-7. PubMed ID: 15881248 [TBL] [Abstract][Full Text] [Related]
7. Validation of an overall model describing the effect of three environmental factors on the apparent D-value of Bacillus cereus spores. Leguerinel I; Spegagne I; Couvert O; Gaillard S; Mafart P Int J Food Microbiol; 2005 Apr; 100(1-3):223-9. PubMed ID: 15854707 [TBL] [Abstract][Full Text] [Related]
8. The influence of nisin on the thermal resistance of Bacillus cereus. Vessoni P; Moraes DA J Food Prot; 2002 Feb; 65(2):415-8. PubMed ID: 11848577 [TBL] [Abstract][Full Text] [Related]
9. Influence of the sporulation temperature on the impact of the nutrients inosine and l-alanine on Bacillus cereus spore germination. Gounina-Allouane R; Broussolle V; Carlin F Food Microbiol; 2008 Feb; 25(1):202-6. PubMed ID: 17993396 [TBL] [Abstract][Full Text] [Related]
10. Formation of the spore clumps during heat treatment increases the heat resistance of bacterial spores. Furukawa S; Narisawa N; Watanabe T; Kawarai T; Myozen K; Okazaki S; Ogihara H; Yamasaki M Int J Food Microbiol; 2005 Jun; 102(1):107-11. PubMed ID: 15925006 [TBL] [Abstract][Full Text] [Related]
11. Modelling the influence of the sporulation temperature upon the bacterial spore heat resistance, application to heating process calculation. Leguérinel I; Couvert O; Mafart P Int J Food Microbiol; 2007 Feb; 114(1):100-4. PubMed ID: 17184868 [TBL] [Abstract][Full Text] [Related]
12. Radiation-heat synergism for inactivation of Alicyclobacillus acidoterrestris spores in citrus juice. Nakauma M; Saito K; Katayama T; Tada M; Todoriki S J Food Prot; 2004 Nov; 67(11):2538-43. PubMed ID: 15553638 [TBL] [Abstract][Full Text] [Related]
13. Some microbiological aspects of inedible rendering processes. Hansen PI; Olgaard K Zentralbl Bakteriol Mikrobiol Hyg B; 1984 Dec; 180(1):3-20. PubMed ID: 6441385 [TBL] [Abstract][Full Text] [Related]
14. A comparison of the effects of E-beam irradiation and heat treatment on the variability of Bacillus cereus inactivation and lag phase duration of surviving cells. Aguirre JS; Ordóñez JA; García de Fernando GD Int J Food Microbiol; 2012 Feb; 153(3):444-52. PubMed ID: 22225985 [TBL] [Abstract][Full Text] [Related]
15. Modelling the influence of palmitic, palmitoleic, stearic and oleic acids on apparent heat resistance of spores of Bacillus cereus NTCC 11145 and Clostridium sporogenes Pasteur 79.3. Lekogo BM; Coroller L; Mathot AG; Mafart P; Leguerinel I Int J Food Microbiol; 2010 Jul; 141(3):242-7. PubMed ID: 20573415 [TBL] [Abstract][Full Text] [Related]
16. Effect of environmental parameters on growth kinetics of Bacillus cereus (ATCC 7004) after mild heat treatment. Martínez S; Borrajo R; Franco I; Carballo J Int J Food Microbiol; 2007 Jun; 117(2):223-7. PubMed ID: 16978725 [TBL] [Abstract][Full Text] [Related]
17. Modelling the effect of a heat shock and germinant concentration on spore germination of a wild strain of Bacillus cereus. Collado J; Fernández A; Rodrigo M; Martínez A Int J Food Microbiol; 2006 Jan; 106(1):85-9. PubMed ID: 16216372 [TBL] [Abstract][Full Text] [Related]
18. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores. Warda AK; den Besten HM; Sha N; Abee T; Nierop Groot MN Int J Food Microbiol; 2015 May; 201():27-34. PubMed ID: 25727186 [TBL] [Abstract][Full Text] [Related]
19. Bacillus cereus endospores exhibit a heterogeneous response to heat treatment and low-temperature storage. Cronin UP; Wilkinson MG Food Microbiol; 2008 Apr; 25(2):235-43. PubMed ID: 18206765 [TBL] [Abstract][Full Text] [Related]
20. Heat activation of Bacillus spores by the use of microwave irradiation. Chipley JR; Rohlfs LA; Ford CL Microbios; 1980; 29(116):105-8. PubMed ID: 6790914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]