These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 16943310)

  • 21. Low-frequency oscillations arising from competitive interactions between visual stimuli in macaque inferotemporal cortex.
    Rollenhagen JE; Olson CR
    J Neurophysiol; 2005 Nov; 94(5):3368-87. PubMed ID: 15928064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural representations of perceived bodily actions using a categorical frame of reference.
    Jellema T; Perrett DI
    Neuropsychologia; 2006; 44(9):1535-46. PubMed ID: 16530792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Norm-based face encoding by single neurons in the monkey inferotemporal cortex.
    Leopold DA; Bondar IV; Giese MA
    Nature; 2006 Aug; 442(7102):572-5. PubMed ID: 16862123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship between stimulus complexity and neuronal activity in the inferotemporal cortex of the macaque monkey.
    Sáry G; Chadaide Z; Tompa T; Kovács G; Köteles K; Boda K; Raduly L; Benedek G
    Brain Res Cogn Brain Res; 2004 Dec; 22(1):1-12. PubMed ID: 15561495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing.
    DiCarlo JJ; Maunsell JH
    Nat Neurosci; 2000 Aug; 3(8):814-21. PubMed ID: 10903575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatio-temporal prediction and inference by V1 neurons.
    Guo K; Robertson RG; Pulgarin M; Nevado A; Panzeri S; Thiele A; Young MP
    Eur J Neurosci; 2007 Aug; 26(4):1045-54. PubMed ID: 17714195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Object category structure in response patterns of neuronal population in monkey inferior temporal cortex.
    Kiani R; Esteky H; Mirpour K; Tanaka K
    J Neurophysiol; 2007 Jun; 97(6):4296-309. PubMed ID: 17428910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial frequency components influence cell activity in the inferotemporal cortex.
    Bermudez MA; Vicente AF; Romero MC; Perez R; Gonzalez F
    Vis Neurosci; 2009; 26(4):421-8. PubMed ID: 19804657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Responses to direction and transparent motion stimuli in area FST of the macaque.
    Rosenberg A; Wallisch P; Bradley DC
    Vis Neurosci; 2008; 25(2):187-95. PubMed ID: 18442441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissociation of spatial-, object-, and sound-coding neurons in the mediodorsal nucleus of the primate thalamus.
    Tanibuchi I; Goldman-Rakic PS
    J Neurophysiol; 2003 Feb; 89(2):1067-77. PubMed ID: 12574481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coding of images of materials by macaque inferior temporal cortical neurons.
    Köteles K; De Mazière PA; Van Hulle M; Orban GA; Vogels R
    Eur J Neurosci; 2008 Jan; 27(2):466-82. PubMed ID: 18215241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The representation of Kanizsa illusory contours in the monkey inferior temporal cortex.
    Sáry G; Köteles K; Kaposvári P; Lenti L; Csifcsák G; Frankó E; Benedek G; Tompa T
    Eur J Neurosci; 2008 Nov; 28(10):2137-46. PubMed ID: 19046395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic shape synthesis in posterior inferotemporal cortex.
    Brincat SL; Connor CE
    Neuron; 2006 Jan; 49(1):17-24. PubMed ID: 16387636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of perceptual learning in visual backward masking on the responses of macaque inferior temporal neurons.
    Op de Beeck HP; Wagemans J; Vogels R
    Neuroscience; 2007 Mar; 145(2):775-89. PubMed ID: 17293053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Underlying principles of visual shape selectivity in posterior inferotemporal cortex.
    Brincat SL; Connor CE
    Nat Neurosci; 2004 Aug; 7(8):880-6. PubMed ID: 15235606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model for learning topographically organized parts-based representations of objects in visual cortex: topographic nonnegative matrix factorization.
    Hosoda K; Watanabe M; Wersing H; Körner E; Tsujino H; Tamura H; Fujita I
    Neural Comput; 2009 Sep; 21(9):2605-33. PubMed ID: 19548799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system.
    Rolls ET; Tromans JM; Stringer SM
    Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal synchrony does not correlate with motion coherence in cortical area MT.
    Thiele A; Stoner G
    Nature; 2003 Jan; 421(6921):366-70. PubMed ID: 12540900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single cell integration of animate form, motion and location in the superior temporal cortex of the macaque monkey.
    Jellema T; Maassen G; Perrett DI
    Cereb Cortex; 2004 Jul; 14(7):781-90. PubMed ID: 15115740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural mechanisms of visual attention: how top-down feedback highlights relevant locations.
    Saalmann YB; Pigarev IN; Vidyasagar TR
    Science; 2007 Jun; 316(5831):1612-5. PubMed ID: 17569863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.