These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 16943314)
1. Changes in stretch reflex excitability are related to "giving way" symptoms in patients with anterior cruciate ligament rupture. Melnyk M; Faist M; Gothner M; Claes L; Friemert B J Neurophysiol; 2007 Jan; 97(1):474-80. PubMed ID: 16943314 [TBL] [Abstract][Full Text] [Related]
2. Differentiation of hamstring short latency versus medium latency responses after tibia translation. Friemert B; Bumann-Melnyk M; Faist M; Schwarz W; Gerngross H; Claes L Exp Brain Res; 2005 Jan; 160(1):1-9. PubMed ID: 15322783 [TBL] [Abstract][Full Text] [Related]
3. Elucidation of a potentially destabilizing control strategy in ACL deficient non-copers. Chmielewski TL; Hurd WJ; Snyder-Mackler L J Electromyogr Kinesiol; 2005 Feb; 15(1):83-92. PubMed ID: 15642656 [TBL] [Abstract][Full Text] [Related]
4. Effects of knee bracing on postural control after anterior cruciate ligament rupture. Palm HG; Brattinger F; Stegmueller B; Achatz G; Riesner HJ; Friemert B Knee; 2012 Oct; 19(5):664-71. PubMed ID: 21871811 [TBL] [Abstract][Full Text] [Related]
5. Intraoperative direct mechanical stimulation of the anterior cruciate ligament elicits short- and medium-latency hamstring reflexes. Friemert B; Faist M; Spengler C; Gerngross H; Claes L; Melnyk M J Neurophysiol; 2005 Dec; 94(6):3996-4001. PubMed ID: 16135551 [TBL] [Abstract][Full Text] [Related]
6. Laxity, instability, and functional outcome after ACL injury: copers versus noncopers. Eastlack ME; Axe MJ; Snyder-Mackler L Med Sci Sports Exerc; 1999 Feb; 31(2):210-5. PubMed ID: 10063808 [TBL] [Abstract][Full Text] [Related]
7. Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency. Boerboom AL; Hof AL; Halbertsma JP; van Raaij JJ; Schenk W; Diercks RL; van Horn JR Knee Surg Sports Traumatol Arthrosc; 2001 Jul; 9(4):211-6. PubMed ID: 11522076 [TBL] [Abstract][Full Text] [Related]
8. Loss of neuromuscular control related to motion in the acutely ACL-injured knee: an experimental study. Bonsfills N; Gómez-Barrena E; Raygoza JJ; Núñez A Eur J Appl Physiol; 2008 Oct; 104(3):567-77. PubMed ID: 18719937 [TBL] [Abstract][Full Text] [Related]
9. Submaximal fatigue of the hamstrings impairs specific reflex components and knee stability. Melnyk M; Gollhofer A Knee Surg Sports Traumatol Arthrosc; 2007 May; 15(5):525-32. PubMed ID: 17151846 [TBL] [Abstract][Full Text] [Related]
11. Group I afferent pathway contributes to functional knee stability. Friemert B; Franke S; Gollhofer A; Claes L; Faist M J Neurophysiol; 2010 Feb; 103(2):616-22. PubMed ID: 19955289 [TBL] [Abstract][Full Text] [Related]
12. Anterior positioning of tibia during motion after anterior cruciate ligament injury. Kvist J; Gillquist J Med Sci Sports Exerc; 2001 Jul; 33(7):1063-72. PubMed ID: 11445751 [TBL] [Abstract][Full Text] [Related]
13. The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Zantop T; Herbort M; Raschke MJ; Fu FH; Petersen W Am J Sports Med; 2007 Feb; 35(2):223-7. PubMed ID: 17158275 [TBL] [Abstract][Full Text] [Related]
14. Do ACL-injured copers exhibit differences in knee kinematics?: An MRI study. Barrance PJ; Williams GN; Snyder-Mackler L; Buchanan TS Clin Orthop Relat Res; 2007 Jan; 454():74-80. PubMed ID: 17091013 [TBL] [Abstract][Full Text] [Related]
15. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. Hurd WJ; Snyder-Mackler L J Orthop Res; 2007 Oct; 25(10):1369-77. PubMed ID: 17557321 [TBL] [Abstract][Full Text] [Related]
16. Heightened flexor withdrawal responses following ACL rupture are enhanced by passive tibial translation. Courtney CA; Durr RK; Emerson-Kavchak AJ; Witte EO; Santos MJ Clin Neurophysiol; 2011 May; 122(5):1005-10. PubMed ID: 20875770 [TBL] [Abstract][Full Text] [Related]
17. Estimation of ligament loading and anterior tibial translation in healthy and ACL-deficient knees during gait and the influence of increasing tibial slope using EMG-driven approach. Shao Q; MacLeod TD; Manal K; Buchanan TS Ann Biomed Eng; 2011 Jan; 39(1):110-21. PubMed ID: 20683675 [TBL] [Abstract][Full Text] [Related]
18. The effect of anterior cruciate ligament rupture on the timing and amplitude of gastrocnemius muscle activation: a study of alterations in EMG measures and their relationship to knee joint stability. Klyne DM; Keays SL; Bullock-Saxton JE; Newcombe PA J Electromyogr Kinesiol; 2012 Jun; 22(3):446-55. PubMed ID: 22356847 [TBL] [Abstract][Full Text] [Related]
19. Validation of a measurement device for instrumented quantification of anterior translation and rotational assessment of the knee. Mayr HO; Hoell A; Bernstein A; Hube R; Zeiler C; Kalteis T; Suedkamp NP; Stoehr A Arthroscopy; 2011 Aug; 27(8):1096-104. PubMed ID: 21641751 [TBL] [Abstract][Full Text] [Related]
20. Influence of anthropometric and mechanical variations on functional instability in the ACL-deficient knee. Liu W; Maitland ME Ann Biomed Eng; 2003 Nov; 31(10):1153-61. PubMed ID: 14649489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]