These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16943559)

  • 21. Brain activity for visual judgment of lifted weight.
    Ritter A; Weiss T; Franz M; de Lussanet MH
    Hum Mov Sci; 2013 Oct; 32(5):924-37. PubMed ID: 23932237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of related sensory inputs on motor performances in man studied through changes in perceived heaviness.
    Gandevia SC; McCloskey DI
    J Physiol; 1977 Nov; 272(3):653-72. PubMed ID: 592207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip.
    Johansson RS; Westling G
    Exp Brain Res; 1988; 71(1):59-71. PubMed ID: 3416958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Space-based and object-based visual attention: shared and specific neural domains.
    Fink GR; Dolan RJ; Halligan PW; Marshall JC; Frith CD
    Brain; 1997 Nov; 120 ( Pt 11)():2013-28. PubMed ID: 9397018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size-weight illusion, anticipation, and adaptation of fingertip forces in patients with cerebellar degeneration.
    Rabe K; Brandauer B; Li Y; Gizewski ER; Timmann D; Hermsdörfer J
    J Neurophysiol; 2009 Feb; 101(2):569-79. PubMed ID: 19036861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural substrates for observing and imagining non-object-directed actions.
    Lui F; Buccino G; Duzzi D; Benuzzi F; Crisi G; Baraldi P; Nichelli P; Porro CA; Rizzolatti G
    Soc Neurosci; 2008; 3(3-4):261-75. PubMed ID: 18979380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tapping movements according to regular and irregular visual timing signals investigated with fMRI.
    Lutz K; Specht K; Shah NJ; Jäncke L
    Neuroreport; 2000 Apr; 11(6):1301-6. PubMed ID: 10817611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensorimotor memory for fingertip forces during object lifting: the role of the primary motor cortex.
    Berner J; Schönfeldt-Lecuona C; Nowak DA
    Neuropsychologia; 2007 Apr; 45(8):1931-8. PubMed ID: 17239907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Weigh(t)ing for awareness.
    Chatterjee A; Thompson KA
    Brain Cogn; 1998 Aug; 37(3):477-90. PubMed ID: 9733561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Passive somatosensory discrimination tasks in healthy volunteers: differential networks involved in familiar versus unfamiliar shape and length discrimination.
    Van de Winckel A; Sunaert S; Wenderoth N; Peeters R; Van Hecke P; Feys H; Horemans E; Marchal G; Swinnen SP; Perfetti C; De Weerdt W
    Neuroimage; 2005 Jun; 26(2):441-53. PubMed ID: 15907302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study.
    Schabrun SM; Ridding MC; Miles TS
    Eur J Neurosci; 2008 Feb; 27(3):750-6. PubMed ID: 18279327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation and decay of sensorimotor and associative memory in object lifting.
    Nowak DA; Koupan C; Hermsdörfer J
    Eur J Appl Physiol; 2007 Aug; 100(6):719-26. PubMed ID: 17503069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of chewing-side preference on human brain activity during tooth clenching: an fMRI study.
    Jiang H; Liu H; Liu G; Jin Z; Liu X
    J Oral Rehabil; 2010 Dec; 37(12):877-83. PubMed ID: 20653828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Parietal Cortices and Body Information].
    Naito E; Amemiya K; Morita T
    Brain Nerve; 2016 Nov; 68(11):1313-1320. PubMed ID: 27852022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task.
    Papadelis C; Arfeller C; Erla S; Nollo G; Cattaneo L; Braun C
    Brain Res; 2016 Nov; 1650():252-266. PubMed ID: 27641995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional brain areas used for the lifting of objects using a precision grip: a PET study.
    Kinoshita H; Oku N; Hashikawa K; Nishimura T
    Brain Res; 2000 Feb; 857(1-2):119-30. PubMed ID: 10700559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissociable neural mechanisms for determining the perceived heaviness of objects and the predicted weight of objects during lifting: an fMRI investigation of the size-weight illusion.
    Chouinard PA; Large ME; Chang EC; Goodale MA
    Neuroimage; 2009 Jan; 44(1):200-12. PubMed ID: 18801445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Illusions of force perception: the role of sensori-motor predictions, visual information, and motor errors.
    Diedrichsen J; Verstynen T; Hon A; Zhang Y; Ivry RB
    J Neurophysiol; 2007 May; 97(5):3305-13. PubMed ID: 17344369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.
    Gooijers J; Beets IA; Albouy G; Beeckmans K; Michiels K; Sunaert S; Swinnen SP
    Brain; 2016 Sep; 139(Pt 9):2469-85. PubMed ID: 27435093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A parietal-frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency.
    Huang MX; Lee RR; Miller GA; Thoma RJ; Hanlon FM; Paulson KM; Martin K; Harrington DL; Weisend MP; Edgar JC; Canive JM
    Neuroimage; 2005 Oct; 28(1):99-114. PubMed ID: 15979344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.