These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1694398)

  • 21. Membrane cholesterol depletion and K+ transport in high and low potassium sheep red cells.
    Grey JE; Lauf PK
    Membr Biochem; 1980; 3(1-2):21-35. PubMed ID: 7432186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of Na,K-ATPase activity reduces Babesia gibsoni infection of canine erythrocytes with inherited high K, low Na concentrations.
    Yamasaki M; Takada A; Yamato O; Maede Y
    J Parasitol; 2005 Dec; 91(6):1287-92. PubMed ID: 16539007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinicopathologic and electrocardiographic features of Akita dogs with high and low erythrocyte potassium phenotypes.
    Conrado FO; Oliveira ST; Lacerda LA; Silva MO; Hlavac N; González FH
    Vet Clin Pathol; 2014 Mar; 43(1):50-4. PubMed ID: 24405428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of maturation of membrane transport function in red blood cells by X-ray microanalysis.
    Lee P; Kirk RG
    J Membr Biol; 1982; 67(2):103-11. PubMed ID: 7097757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voltage modulation of Na+/K+ transport in human erythrocytes.
    Teissie J; Yow Tsong T
    J Physiol (Paris); 1981 May; 77(9):1043-53. PubMed ID: 6286955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Erythrocyte cation permeability induced by mechanical stress: a model for sickle cell cation loss.
    Johnson RM; Gannon SA
    Am J Physiol; 1990 Nov; 259(5 Pt 1):C746-51. PubMed ID: 2240192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of the plant alkaloid sanguinarine on cation transport by human red blood cells and lipid bilayer membranes.
    Cala PM; Nørby JG; Tosteson DC
    J Membr Biol; 1982; 64(1-2):23-31. PubMed ID: 7057451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased human red cell cation passive permeability below 12 degrees C.
    Stewart GW; Ellory JC; Klein RA
    Nature; 1980 Jul; 286(5771):403-4. PubMed ID: 7402324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cation transport in different volume populations of genetically low K+ lamb red cells.
    Lauf PK; Valet G
    J Cell Physiol; 1980 Sep; 104(3):283-93. PubMed ID: 7419606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complement induces a transient increase in membrane permeability in unlysed erythrocytes.
    Halperin JA; Nicholson-Weller A; Brugnara C; Tosteson DC
    J Clin Invest; 1988 Aug; 82(2):594-600. PubMed ID: 3403718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of sodium periodate treatment on the modulation of the sodium pump in low-potassium type (LK) sheep red cells by the L antigen.
    Stein JM; Ellory JC; Tucker EM
    Biochim Biophys Acta; 1987 Nov; 904(2):330-6. PubMed ID: 2822119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium, cell shrinkage, and prolytic state of human red blood cells.
    Crespo LM; Novak TS; Freedman JC
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C138-52. PubMed ID: 3103462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Potassium and anion transport and activity of the Na+-pump in the erythrocyte membrane: 3 different mechanisms of regulation by intracellular calcium].
    Orlov SN; Pokudin NI; Kotelevtsev IuV
    Biokhimiia; 1987 Aug; 52(8):1373-86. PubMed ID: 2444274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Erythrocyte membrane permeability to monovalent ions of sodium and potassium in adolescents with essential arterial hypertension and renal hypertension].
    Kavtaradze VG; Nadiradze NI; Lomouri MA; Chachava TM
    Kardiologiia; 1990 Mar; 30(3):53-5. PubMed ID: 2381122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of vanadate, menadione and menadione analogs on the Ca2+-activated K+ channels in human red cells. Possible relations to membrane-bound oxidoreductase activity.
    Fuhrmann GF; Schwarz W; Kersten R; Sdun H
    Biochim Biophys Acta; 1985 Nov; 820(2):223-34. PubMed ID: 2413892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of extracellular potassium on the loss of potassium from human red blood cells treated with propranolol.
    Manninen V; Skulskii IA
    Acta Physiol Scand; 1981 Mar; 111(3):361-5. PubMed ID: 7315403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An X-ray microanalysis study of cation changes during development in erythropoietic cells.
    Kirk RG; Andrews SB; Lee P
    Scan Electron Microsc; 1983; (Pt 2):793-800. PubMed ID: 6635576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemolytic action of potassium salts on dog red blood cells.
    Parker JC
    Am J Physiol; 1983 May; 244(5):C313-7. PubMed ID: 6846521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The permeability of rat erythrocyte membranes for sodium and potassium ions during exposure to pulsed electromagnetic field under head-down-tilt hypokinesia].
    Loginov VA; Timonin IM; Minchenko BI; Klimovitskiĭ VIa
    Aviakosm Ekolog Med; 1992; 26(5-6):71-5. PubMed ID: 1307043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship of red blood cell ion transport alterations and serum lipid abnormalities in Lyon genetically hypertensive rats.
    Zicha J; Dobesová Z; Kunes J; Vincent M
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1123-8. PubMed ID: 9365824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.