These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 169441)

  • 21. Changes in cAMP metabolism during phagocytosis of S. aureus by human monocytes.
    Merdrignac G; Duval J; Gouranton J; Genetet B
    J Reticuloendothel Soc; 1982 Sep; 32(3):209-18. PubMed ID: 6296386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proceedings: Synthesis of cyclic AMP and cyclic AMP-mediated protein phosphorylation in rat erythrocytes.
    Quiring K; Kaiser G; Gauger D; Palm D
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R77. PubMed ID: 4367360
    [No Abstract]   [Full Text] [Related]  

  • 23. Characteristics of the adenylyl cyclase system of differentiating rabbit bone marrow erythroblasts.
    Setchenska MS; Arnstein HR
    Biomed Biochim Acta; 1983; 42(9):1111-22. PubMed ID: 6322745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and degradation of cyclic 3',5'-adenosine monophosphate in frog erythrocytes.
    Rosen OM; Goren EN; Erlichman J; Rosen SM
    Adv Biochem Psychopharmacol; 1970; 3():31-50. PubMed ID: 4331461
    [No Abstract]   [Full Text] [Related]  

  • 25. Biochemical properties of cardiac sarcolemma: adenylate cyclase and (Na++K+)-activated ATPase.
    Tada M; Kirchberger MA; Katz AM
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():117-31. PubMed ID: 176692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adenylate cyclase-cyclic AMP-phosphodiesterase system in microdissected brain areas of normotensive and spontaneously hypertensive rats.
    Bahner U; Palkovits M; Geiger H; Schmid G; Heidland A
    J Chem Neuroanat; 1989; 2(1):45-55. PubMed ID: 2551340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Adenosine-3',5'-phosphate, adenylate kinase, and cyclic AMP phosphodiesterase of the eye lens during aging].
    Klethi J; Bizec JC; Mandel P
    C R Seances Acad Sci III; 1981 Nov; 293(8):419-22. PubMed ID: 6274484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insulin stimulation of cyclic AMP phosphodiesterase is independent from the G-protein pathways involved in adenylate cyclase regulation.
    Weber HW; Chung FZ; Day K; Appleman MM
    J Cyclic Nucleotide Protein Phosphor Res; 1986; 11(5):345-54. PubMed ID: 3040818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP.
    Maurice DH; Haslam RJ
    Mol Pharmacol; 1990 May; 37(5):671-81. PubMed ID: 2160060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic 3',5'-adenosine monophosphate in human blood platelets. II. Effect of N6-2'-o-dibutyryl cyclic 3',5'-adenosine monophosphate on platelet function.
    Salzman EW; Levine L
    J Clin Invest; 1971 Jan; 50(1):131-41. PubMed ID: 4322665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proceedings: Synthesis and action of cyclic adenosine-3',5'-monophosphate in rat reticulocytes.
    Dietz J; Kaiser G; Weimer G; Gauger D; Hellwich M; Palm D
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287 Suppl():R50. PubMed ID: 167308
    [No Abstract]   [Full Text] [Related]  

  • 32. Impaired adenylate cyclase activity of phenylhydrazine-induced reticulocytes.
    Cooper DM; Jagus R
    J Biol Chem; 1982 May; 257(9):4684-7. PubMed ID: 6175642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for regulatory control of canine platelet phosphodiesterase.
    Boudreaux MK; Dodds WJ; Slauson DO; Catalfamo JL
    Biochem Biophys Res Commun; 1986 Oct; 140(2):589-94. PubMed ID: 3022725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maturation-dependent changes of the rabbit reticulocyte energy metabolism.
    Kostić MM; Rapoport SM
    FEBS Lett; 1989 Jun; 250(1):40-4. PubMed ID: 2544458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on adenosine 3',5'-monophosphate phosphodiesterase of human erythrocyte membranes.
    Suzuki K; Terao T; Osawa T
    Biochim Biophys Acta; 1980 Oct; 602(1):78-86. PubMed ID: 6251888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of activation by adenosine 3':5'-cyclic monophosphate of a protein phosphokinase from rabbit reticulocytes.
    Tao M; Salas ML; Lipmann F
    Proc Natl Acad Sci U S A; 1970 Sep; 67(1):408-14. PubMed ID: 4318788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the active calcium extrusion, calcium buffering capacity and ATPase activity in rabbit reticulocytes and mature red cells.
    Lucas M; Mata R; Romero A
    Biochim Biophys Acta; 1988 Jul; 942(1):65-72. PubMed ID: 2968119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Turnover of adenosine 3':5'-cyclic monophosphate in chicken erythrocytes.
    Gorin E; Dickbuch S
    Biochem J; 1979 Dec; 184(3):575-9. PubMed ID: 231974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Leading criteria of reticulocyte maturation. 3. Behavior of hexokinase and glucokinase of red blood cells during a bleeding anemia of the rabbit].
    Gerber G; Schröder K; Rosenthal S
    Acta Biol Med Ger; 1973; 30(6):773-9. PubMed ID: 4762705
    [No Abstract]   [Full Text] [Related]  

  • 40. Release of cyclic AMP from chicken erythrocytes.
    Gorin E; Dickbuch S
    Horm Metab Res; 1980 Mar; 12(3):120-4. PubMed ID: 6245999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.