These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I. Sauer SW; Opp S; Komatsuzaki S; Blank AE; Mittelbronn M; Burgard P; Koeller DM; Okun JG; Kölker S Biochim Biophys Acta; 2015 May; 1852(5):768-77. PubMed ID: 25558815 [TBL] [Abstract][Full Text] [Related]
4. Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1. Thies B; Meyer-Schwesinger C; Lamp J; Schweizer M; Koeller DM; Ullrich K; Braulke T; Mühlhausen C Biochim Biophys Acta; 2013 Oct; 1832(10):1463-72. PubMed ID: 23623985 [TBL] [Abstract][Full Text] [Related]
5. Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I. Busanello EN; Fernandes CG; Martell RV; Lobato VG; Goodman S; Woontner M; de Souza DO; Wajner M J Neurol Sci; 2014 Nov; 346(1-2):260-7. PubMed ID: 25241940 [TBL] [Abstract][Full Text] [Related]
6. A diet-induced mouse model for glutaric aciduria type I. Zinnanti WJ; Lazovic J; Wolpert EB; Antonetti DA; Smith MB; Connor JR; Woontner M; Goodman SI; Cheng KC Brain; 2006 Apr; 129(Pt 4):899-910. PubMed ID: 16446282 [TBL] [Abstract][Full Text] [Related]
7. Induction of Neuroinflammatory Response and Histopathological Alterations Caused by Quinolinic Acid Administration in the Striatum of Glutaryl-CoA Dehydrogenase Deficient Mice. Amaral AU; Seminotti B; da Silva JC; de Oliveira FH; Ribeiro RT; Vargas CR; Leipnitz G; Santamaría A; Souza DO; Wajner M Neurotox Res; 2018 Apr; 33(3):593-606. PubMed ID: 29235064 [TBL] [Abstract][Full Text] [Related]
8. Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. Sauer SW; Okun JG; Fricker G; Mahringer A; Müller I; Crnic LR; Mühlhausen C; Hoffmann GF; Hörster F; Goodman SI; Harding CO; Koeller DM; Kölker S J Neurochem; 2006 May; 97(3):899-910. PubMed ID: 16573641 [TBL] [Abstract][Full Text] [Related]
9. Animal models for glutaryl-CoA dehydrogenase deficiency. Koeller DM; Sauer S; Wajner M; de Mello CF; Goodman SI; Woontner M; Mühlhausen C; Okun JG; Kölker S J Inherit Metab Dis; 2004; 27(6):813-8. PubMed ID: 15505386 [TBL] [Abstract][Full Text] [Related]
10. A knock-in rat model unravels acute and chronic renal toxicity in glutaric aciduria type I. Gonzalez Melo M; Fontana AO; Viertl D; Allenbach G; Prior JO; Rotman S; Feichtinger RG; Mayr JA; Costanzo M; Caterino M; Ruoppolo M; Braissant O; Barbey F; Ballhausen D Mol Genet Metab; 2021 Dec; 134(4):287-300. PubMed ID: 34799272 [TBL] [Abstract][Full Text] [Related]
12. Transport and distribution of 3-hydroxyglutaric acid before and during induced encephalopathic crises in a mouse model of glutaric aciduria type 1. Keyser B; Glatzel M; Stellmer F; Kortmann B; Lukacs Z; Kölker S; Sauer SW; Muschol N; Herdering W; Thiem J; Goodman SI; Koeller DM; Ullrich K; Braulke T; Mühlhausen C Biochim Biophys Acta; 2008 Jun; 1782(6):385-90. PubMed ID: 18348873 [TBL] [Abstract][Full Text] [Related]
14. Glutaric acid and its metabolites cause apoptosis in immature oligodendrocytes: a novel mechanism of white matter degeneration in glutaryl-CoA dehydrogenase deficiency. Gerstner B; Gratopp A; Marcinkowski M; Sifringer M; Obladen M; Bührer C Pediatr Res; 2005 Jun; 57(6):771-6. PubMed ID: 15774829 [TBL] [Abstract][Full Text] [Related]
15. Striatal neuronal death mediated by astrocytes from the Gcdh-/- mouse model of glutaric acidemia type I. Olivera-Bravo S; Ribeiro CA; Isasi E; Trías E; Leipnitz G; Díaz-Amarilla P; Woontner M; Beck C; Goodman SI; Souza D; Wajner M; Barbeito L Hum Mol Genet; 2015 Aug; 24(16):4504-15. PubMed ID: 25968119 [TBL] [Abstract][Full Text] [Related]
16. Oxidative Stress, Disrupted Energy Metabolism, and Altered Signaling Pathways in Glutaryl-CoA Dehydrogenase Knockout Mice: Potential Implications of Quinolinic Acid Toxicity in the Neuropathology of Glutaric Acidemia Type I. Seminotti B; Amaral AU; Ribeiro RT; Rodrigues MDN; Colín-González AL; Leipnitz G; Santamaría A; Wajner M Mol Neurobiol; 2016 Nov; 53(9):6459-6475. PubMed ID: 26607633 [TBL] [Abstract][Full Text] [Related]
17. Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: A potential role for glutamatergic-induced excitotoxicity in GA I neuropathology. Rodrigues MD; Seminotti B; Amaral AU; Leipnitz G; Goodman SI; Woontner M; de Souza DO; Wajner M J Neurol Sci; 2015 Dec; 359(1-2):133-40. PubMed ID: 26671102 [TBL] [Abstract][Full Text] [Related]
18. On the neurotoxicity of glutaric, 3-hydroxyglutaric, and trans-glutaconic acids in glutaric acidemia type 1. Lund TM; Christensen E; Kristensen AS; Schousboe A; Lund AM J Neurosci Res; 2004 Jul; 77(1):143-7. PubMed ID: 15197747 [TBL] [Abstract][Full Text] [Related]
19. Increased susceptibility to quinolinic acid-induced seizures and long-term changes in brain oscillations in an animal model of glutaric acidemia type I. Barbieri Caus L; Pasquetti MV; Seminotti B; Woontner M; Wajner M; Calcagnotto ME J Neurosci Res; 2022 Apr; 100(4):992-1007. PubMed ID: 34713466 [TBL] [Abstract][Full Text] [Related]