These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 1694434)

  • 1. Flow cytogenetics.
    Bartholdi MF
    Pathobiology; 1990; 58(2):118-28. PubMed ID: 1694434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of the DNA content of structurally abnormal X chromosomes and X chromosome aneuploidy using high resolution bivariate flow karyotyping.
    Trask B; van den Engh G; Nussbaum R; Schwartz C; Gray J
    Cytometry; 1990; 11(1):184-95. PubMed ID: 2106419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral karyotyping analysis of head and neck squamous cell carcinoma.
    Singh B; Gogineni S; Goberdhan A; Sacks P; Shaha A; Shah J; Rao P
    Laryngoscope; 2001 Sep; 111(9):1545-50. PubMed ID: 11568603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome banding analysis by slit-scan flow cytometry.
    Bartholdi MF; Meyne J; Johnston RG; Cram LS
    Cytometry; 1989 Mar; 10(2):124-33. PubMed ID: 2496955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of recurrent chromosome abnormalities in Ewing's sarcoma and peripheral neuroectodermal tumor cells using bivariate flow karyotyping.
    Boschman GA; Rens W; Manders EM; Slater RM; Versteeg R; Aten JA
    Genes Chromosomes Cancer; 1992 Nov; 5(4):375-84. PubMed ID: 1283326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping.
    Trask B; van den Engh G; Mayall B; Gray JW
    Am J Hum Genet; 1989 Nov; 45(5):739-52. PubMed ID: 2479266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting abnormal human chromosome constitutions by dual laser flow cytogenetics.
    Lebo RV; Golbus MS; Cheung MC
    Am J Med Genet; 1986 Nov; 25(3):519-29. PubMed ID: 2431619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of flow karyotyping in prenatal detection of chromosome aberrations.
    Gray JW; Trask B; van den Engh G; Silva A; Lozes C; Grell S; Schonberg S; Yu LC; Golbus MS
    Am J Hum Genet; 1988 Jan; 42(1):49-59. PubMed ID: 3337112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and cytogenetic analysis of an abnormal pig chromosome for flow cytometry and sorting.
    Hausmann M; Popescu CP; Boscher J; Kerboeuf D; Dölle J; Cremer C
    Z Naturforsch C J Biosci; 1993; 48(7-8):645-53. PubMed ID: 8216615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bivariate flow karyotyping of human chromosomes: evaluation of variation in Hoechst 33258 fluorescence, chromomycin A3 fluorescence, and relative chromosomal DNA content.
    Boschman GA; Rens W; van Oven CH; Manders EM; Aten JA
    Cytometry; 1991; 12(6):559-69. PubMed ID: 1722448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimising human chromosome separation for the production of chromosome-specific DNA libraries by flow sorting.
    Harris P; Boyd E; Ferguson-Smith MA
    Hum Genet; 1985; 70(1):59-65. PubMed ID: 2581883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The binding kinetics and interaction of DNA fluorochromes used in the analysis of nuclei and chromosomes by flow cytometry.
    van den Engh GJ; Trask BJ; Gray JW
    Histochemistry; 1986; 84(4-6):501-8. PubMed ID: 2424868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved resolution of flow cytometric measurements of Hoechst- and chromomycin-A3-stained human chromosomes after addition of citrate and sulfite.
    van den Engh G; Trask B; Lansdorp P; Gray J
    Cytometry; 1988 May; 9(3):266-70. PubMed ID: 2454178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of pig chromosomes in pig-mouse somatic cell hybrid bivariate flow karyotypes.
    Bouvet A; Konfortov BA; Miller NG; Brown D; Tucker EM
    Cytometry; 1993; 14(4):369-76. PubMed ID: 7685678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Flow cytogenetics. Principles, advantages and limitations. What trends for onco-hematology?].
    Métézeau P
    Pathol Biol (Paris); 1988 Jan; 36(1):46-51. PubMed ID: 3283671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of inverted duplicated #15 chromosomes using bivariate flow cytometric analysis.
    Lalande M; Schreck RR; Hoffman R; Latt SA
    Cytometry; 1985 Jan; 6(1):1-6. PubMed ID: 2578344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping.
    Veldman T; Vignon C; Schröck E; Rowley JD; Ried T
    Nat Genet; 1997 Apr; 15(4):406-10. PubMed ID: 9090389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line sorting of human chromosomes by centromeric index, and identification of sorted populations by GTG-banding and fluorescent in situ hybridization.
    Boschman GA; Rens W; Manders E; van Oven C; Barendsen GW; Aten JA
    Hum Genet; 1990 Jun; 85(1):41-8. PubMed ID: 2358302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bivariate chromosome analysis using a commercial flow cytometer.
    Carter NP
    Methods Mol Biol; 1994; 29():187-204. PubMed ID: 7518284
    [No Abstract]   [Full Text] [Related]  

  • 20. Standardization of bivariate flow karyotypes of human chromosomes for clinical applications.
    Kuriki H; Takahashi H
    J Clin Lab Anal; 1997; 11(3):169-74. PubMed ID: 9138107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.