BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16944512)

  • 1. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata.
    Dai LP; Xiong ZT; Huang Y; Li MJ
    Environ Toxicol; 2006 Oct; 21(5):505-12. PubMed ID: 16944512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata.
    Dai LP; Dong XJ; Ma HH
    Chemosphere; 2012 Apr; 87(4):319-25. PubMed ID: 22225708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological responses of Alternanthera philoxeroides (Mart.) Griseb leaves to cadmium stress.
    Ding B; Shi G; Xu Y; Hu J; Xu Q
    Environ Pollut; 2007 Jun; 147(3):800-3. PubMed ID: 17175077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L.
    Lightbourn GJ; Griesbach RJ; Novotny JA; Clevidence BA; Rao DD; Stommel JR
    J Hered; 2008; 99(2):105-11. PubMed ID: 18222931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application.
    Kováčik J; Klejdus B; Stork F; Hedbavny J
    J Hazard Mater; 2012 Nov; 239-240():175-82. PubMed ID: 22989857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content.
    Pawlak-Sprada S; Arasimowicz-Jelonek M; Podgórska M; Deckert J
    Acta Biochim Pol; 2011; 58(2):211-6. PubMed ID: 21503278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of oxidative stress through changes in some indicators related to phenolic metabolism in Malva parviflora exposed to cadmium.
    Zoufan P; Azad Z; Rahnama Ghahfarokhie A; Kolahi M
    Ecotoxicol Environ Saf; 2020 Jan; 187():109811. PubMed ID: 31654866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological responses of Matricaria chamomilla to cadmium and copper excess.
    Kovácik J; Backor M; Kaduková J
    Environ Toxicol; 2008 Feb; 23(1):123-30. PubMed ID: 18214924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Response of winter wheat to cold: production of phenolic compounds and L-phenylalanine ammonia-lyase activity].
    Olenichenko NA; Zagoskina NV
    Prikl Biokhim Mikrobiol; 2005; 41(6):681-5. PubMed ID: 16358760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea.
    Uraguchi S; Watanabe I; Yoshitomi A; Kiyono M; Kuno K
    J Exp Bot; 2006; 57(12):2955-65. PubMed ID: 16873452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in antioxidant potential and sink-organ dry matter with pigment accumulation induced by hexaconazole in Plectranthus forskholii Briq.
    Lakshmanan GM; Jaleel CA; Gomathinayagam M; Panneerselvam R
    C R Biol; 2007 Nov; 330(11):814-20. PubMed ID: 17923375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of cadmium by Myriophyllum heterophyllum Michx. and Potamogeton crispus L. and its effect on pigments and total phenolic compounds.
    Sivaci A; Elmas E; Gümüş F; Sivaci ER
    Arch Environ Contam Toxicol; 2008 May; 54(4):612-8. PubMed ID: 17973070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Cd(2+) on seedling growth of garlic (Allium sativum L.) and selected physiological and biochemical characters.
    Xu P; Zou J; Meng Q; Zou J; Jiang W; Liu D
    Bioresour Technol; 2008 Sep; 99(14):6372-8. PubMed ID: 18222084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb(2+) by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity.
    Estrella-Gómez N; Mendoza-Cózatl D; Moreno-Sánchez R; González-Mendoza D; Zapata-Pérez O; Martínez-Hernández A; Santamaría JM
    Aquat Toxicol; 2009 Mar; 91(4):320-8. PubMed ID: 19110323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata.
    Phetsombat S; Kruatrachue M; Pokethitiyook P; Upatham S
    J Environ Biol; 2006 Oct; 27(4):645-52. PubMed ID: 17405325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Control of L-phenylalanine ammonia-lyase activity and red pigment level in higher plants by 1-amino-2-phenylethylphosphonic acid].
    Janas K
    Postepy Biochem; 1989; 35(1-2):155-61. PubMed ID: 2699027
    [No Abstract]   [Full Text] [Related]  

  • 17. Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian kacip fatimah (Labisia pumila Benth).
    Jaafar HZ; Ibrahim MH; Mohamad Fakri NF
    Molecules; 2012 Jun; 17(6):7305-22. PubMed ID: 22695235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud.
    Liu Y; Wang X; Zeng G; Qu D; Gu J; Zhou M; Chai L
    Chemosphere; 2007 Aug; 69(1):99-107. PubMed ID: 17532363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress responses of duckweed (Lemna minor L.) and water velvet (Azolla filiculoides Lam.) to anionic surfactant sodium-dodecyl-sulphate (SDS).
    Forni C; Braglia R; Harren FJ; Cristescu SM
    Aquat Toxicol; 2012 Apr; 110-111():107-13. PubMed ID: 22277247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effect of ultraviolet-B radiation and cadmium contamination on nutrient uptake and photosynthetic pigments in Brassica campestris L. seedlings.
    Shukla UC; Murthy RC; Kakkar P
    Environ Toxicol; 2008 Dec; 23(6):712-9. PubMed ID: 18348293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.