These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 16944899)
1. Comparison of two methods for obtaining quantitative mass concentrations from aerosol time-of-flight mass spectrometry measurements. Qin X; Bhave PV; Prather KA Anal Chem; 2006 Sep; 78(17):6169-78. PubMed ID: 16944899 [TBL] [Abstract][Full Text] [Related]
2. Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency. Su Y; Sipin MF; Furutani H; Prather KA Anal Chem; 2004 Feb; 76(3):712-9. PubMed ID: 14750867 [TBL] [Abstract][Full Text] [Related]
3. Extending ATOFMS measurements to include refractive index and density. Moffet RC; Prather KA Anal Chem; 2005 Oct; 77(20):6535-41. PubMed ID: 16223237 [TBL] [Abstract][Full Text] [Related]
4. A field-based approach for deterimining ATOFMS instrument sensitities to ammonium and nitrate. Bhave PV; Allen JO; Morrical BD; Fergenson DP; Cass GR; Prather KA Environ Sci Technol; 2002 Nov; 36(22):4868-79. PubMed ID: 12487311 [TBL] [Abstract][Full Text] [Related]
5. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. Pratt KA; Mayer JE; Holecek JC; Moffet RC; Sanchez RO; Rebotier TP; Furutani H; Gonin M; Fuhrer K; Su Y; Guazzotti S; Prather KA Anal Chem; 2009 Mar; 81(5):1792-800. PubMed ID: 19175329 [TBL] [Abstract][Full Text] [Related]
6. Approach for measuring the chemistry of individual particles in the size range critical for cloud formation. Zauscher MD; Moore MJ; Lewis GS; Hering SV; Prather KA Anal Chem; 2011 Mar; 83(6):2271-8. PubMed ID: 21338063 [TBL] [Abstract][Full Text] [Related]
7. Single-particle detection efficiencies of aerosol time-of-flight mass spectrometry during the North Atlantic marine boundary layer experiment. Dall'Osto M; Harrison RM; Beddows DC; Freney EJ; Heal MR; Donovan RJ Environ Sci Technol; 2006 Aug; 40(16):5029-35. PubMed ID: 16955903 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of indoor airborne particles by using real-time aerosol mass spectrometry. Dall'Osto M; Harrison RM; Charpantidou E; Loupa G; Rapsomanikis S Sci Total Environ; 2007 Oct; 384(1-3):120-33. PubMed ID: 17628640 [TBL] [Abstract][Full Text] [Related]
9. The influence of improved air quality on mortality risks in Erfurt, Germany. Peters A; Breitner S; Cyrys J; Stölzel M; Pitz M; Wölke G; Heinrich J; Kreyling W; Küchenhoff H; Wichmann HE Res Rep Health Eff Inst; 2009 Feb; (137):5-77; discussion 79-90. PubMed ID: 19554968 [TBL] [Abstract][Full Text] [Related]
10. Real-time, single-particle volatility, size, and chemical composition measurements of aged urban aerosols. Pratt KA; Prather KA Environ Sci Technol; 2009 Nov; 43(21):8276-82. PubMed ID: 19924956 [TBL] [Abstract][Full Text] [Related]
11. Online laser desorption-multiphoton postionization mass spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different traffic-related and wood combustion sources. Bente M; Sklorz M; Streibel T; Zimmermann R Anal Chem; 2008 Dec; 80(23):8991-9004. PubMed ID: 18983175 [TBL] [Abstract][Full Text] [Related]
12. Design and evaluation of an inlet conditioner to dry particles for real-time particle sizers. Peters TM; Riss AL; Holm RL; Singh M; Vanderpool RW J Environ Monit; 2008 Apr; 10(4):541-51. PubMed ID: 18385876 [TBL] [Abstract][Full Text] [Related]
13. Passive aerosol sampler for particle concentrations and size distributions. Whitehead T; Leith D J Environ Monit; 2008 Mar; 10(3):331-5. PubMed ID: 18392275 [TBL] [Abstract][Full Text] [Related]
14. Evaporation of water from particles in the aerodynamic lens inlet: an experimental study. Zelenyuk A; Imre D; Cuadra-Rodriguez LA Anal Chem; 2006 Oct; 78(19):6942-7. PubMed ID: 17007518 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles. Peters TM; Ott D; O'Shaughnessy PT Ann Occup Hyg; 2006 Nov; 50(8):843-50. PubMed ID: 17041244 [TBL] [Abstract][Full Text] [Related]
16. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Canagaratna MR; Jayne JT; Jimenez JL; Allan JD; Alfarra MR; Zhang Q; Onasch TB; Drewnick F; Coe H; Middlebrook A; Delia A; Williams LR; Trimborn AM; Northway MJ; DeCarlo PF; Kolb CE; Davidovits P; Worsnop DR Mass Spectrom Rev; 2007; 26(2):185-222. PubMed ID: 17230437 [TBL] [Abstract][Full Text] [Related]
17. Electrospray-assisted ultraviolet aerodynamic particle sizer spectrometer for real-time characterization of bacterial particles. Jung JH; Lee JE; Hwang GB; Lee BU; Lee SB; Jurng JS; Bae GN Anal Chem; 2010 Jan; 82(2):664-71. PubMed ID: 20038090 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of an air quality model for the size and composition of source-oriented particle classes. Bhave PV; Kleeman MJ; Allen JO; Hughes LS; Prather KA; Cass GR Environ Sci Technol; 2002 May; 36(10):2154-63. PubMed ID: 12038824 [TBL] [Abstract][Full Text] [Related]
19. An approach to evaluating and correcting aerodynamic particle sizer measurements for phantom particle count creation. Heitbrink WA; Baron PA Am Ind Hyg Assoc J; 1992 Jul; 53(7):427-31. PubMed ID: 1496933 [TBL] [Abstract][Full Text] [Related]
20. Source apportionment of lead-containing aerosol particles in Shanghai using single particle mass spectrometry. Zhang Y; Wang X; Chen H; Yang X; Chen J; Allen JO Chemosphere; 2009 Jan; 74(4):501-7. PubMed ID: 19027137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]