BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 16945384)

  • 1. Structural and redox properties of mitochondrial cytochrome c co-sorbed with phosphate on hematite (alpha-Fe2O3) surfaces.
    Khare N; Eggleston CM; Lovelace DM; Boese SW
    J Colloid Interface Sci; 2006 Nov; 303(2):404-14. PubMed ID: 16945384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemistry of unfolded cytochrome c in neutral and acidic urea solutions.
    Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH
    J Am Chem Soc; 2005 May; 127(20):7638-46. PubMed ID: 15898816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversibility of structural transition of cytochrome c on interacting with and releasing from alternating copolymers of maleic Acid and alkene.
    Liang L; Yao P; Jiang M
    Biomacromolecules; 2006 Jun; 7(6):1829-35. PubMed ID: 16768404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced resonance Raman spectroscopy and spectroscopy study of redox-induced conformational equilibrium of cytochrome c adsorbed on DNA-modified metal electrode.
    Jiang X; Wang Y; Qu X; Dong S
    Biosens Bioelectron; 2006 Jul; 22(1):49-55. PubMed ID: 16414257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the electrostatic interaction on the redox reaction of positively charged cytochrome C adsorbed on the negatively charged surfaces of acid-terminated alkanethiol monolayers on a Au(111) electrode.
    Imabayashi S; Mita T; Kakiuchi T
    Langmuir; 2005 Feb; 21(4):1470-4. PubMed ID: 15697296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for the misfolded bis-His intermediate of cytochrome c: the 1-56 N-fragment.
    Santoni E; Scatragli S; Sinibaldi F; Fiorucci L; Santucci R; Smulevich G
    J Inorg Biochem; 2004 Jun; 98(6):1067-77. PubMed ID: 15149817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy.
    Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG
    J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers.
    de Groot MT; Evers TH; Merkx M; Koper MT
    Langmuir; 2007 Jan; 23(2):729-36. PubMed ID: 17209627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Induced changes in adsorbed cytochrome c. voltammetric and surface-enhanced resonance Raman characterization performed simultaneously at chemically modified silver electrodes.
    Millo D; Bonifacio A; Ranieri A; Borsari M; Gooijer C; van der Zwan G
    Langmuir; 2007 Sep; 23(19):9898-904. PubMed ID: 17685564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome c self-assembly on alkanethiol monolayer electrodes as characterized by AFM, IR, QCM, and direct electrochemistry.
    Nakano K; Yoshitake T; Yamashita Y; Bowden EF
    Langmuir; 2007 May; 23(11):6270-5. PubMed ID: 17461603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states.
    Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome c interaction with neutral lipid membranes: influence of lipid packing and protein charges.
    El Kirat K; Morandat S
    Chem Phys Lipids; 2009 Nov; 162(1-2):17-24. PubMed ID: 19699729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical properties of the interaction between cytochrome c and a hematite nanowire array electrode.
    Wang H; Johs A; Browning JF; Tennant DA; Liang L
    Bioelectrochemistry; 2019 Oct; 129():162-169. PubMed ID: 31176253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome c superstructure biocomposite nucleated by gold nanoparticle: thermal stability and voltammetric behavior.
    Jiang X; Shang L; Wang Y; Dong S
    Biomacromolecules; 2005; 6(6):3030-6. PubMed ID: 16283723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate adsorption onto hematite: an in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation.
    Elzinga EJ; Sparks DL
    J Colloid Interface Sci; 2007 Apr; 308(1):53-70. PubMed ID: 17254592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology-dependent electrochemistry and electrocatalytical activity of cytochrome c.
    Liu H; Tian Y; Deng Z
    Langmuir; 2007 Aug; 23(18):9487-94. PubMed ID: 17665934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of mono-CDNP substitution of lysine residues on the redox reaction of cytochrome c electrostatically adsorbed on a mercaptoheptanoic acid modified Au(111) surface.
    Imabayashi S; Mita T; Kakiuchi T
    Langmuir; 2005 Mar; 21(6):2474-9. PubMed ID: 15752042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(II).
    Rosso KM; Yanina SV; Gorski CA; Larese-Casanova P; Scherer MM
    Environ Sci Technol; 2010 Jan; 44(1):61-7. PubMed ID: 20039734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of S-layer-enveloped cytochrome c polyelectrolyte multilayers.
    Dronov R; Kurth DG; Möhwald H; Scheller FW; Friedmann J; Pum D; Sleytr UB; Lisdat F
    Langmuir; 2008 Aug; 24(16):8779-84. PubMed ID: 18642859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.