BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16945450)

  • 21. Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes.
    Peters SC
    J Contam Hydrol; 2008 Jul; 99(1-4):8-21. PubMed ID: 18571283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arsenic speciation and accumulation in evapoconcentrating waters of agricultural evaporation basins.
    Gao S; Ryu J; Tanji KK; Herbel MJ
    Chemosphere; 2007 Mar; 67(5):862-71. PubMed ID: 17215022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron and arsenic release from aquifer solids in response to biostimulation.
    McLean JE; Dupont RR; Sorensen DL
    J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fe(II)-Fe(III)-bearing phases as a mineralogical control on the heterogeneity of arsenic in Southeast Asian groundwater.
    Burnol A; Charlet L
    Environ Sci Technol; 2010 Oct; 44(19):7541-7. PubMed ID: 20831208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of As(V) and As(III) by reclaimed iron-oxide coated sands.
    Hsu JC; Lin CJ; Liao CH; Chen ST
    J Hazard Mater; 2008 May; 153(1-2):817-26. PubMed ID: 17988793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial processes as key drivers for metal (im)mobilization along a redox gradient in the saturated zone.
    Vanbroekhoven K; Van Roy S; Gielen C; Maesen M; Ryngaert A; Diels L; Seuntjens P
    Environ Pollut; 2007 Aug; 148(3):759-69. PubMed ID: 17445959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crossing redox boundaries--aquifer redox history and effects on iron mineralogy and arsenic availability.
    Banning A; Rüde TR; Dölling B
    J Hazard Mater; 2013 Nov; 262():905-14. PubMed ID: 23280400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arsenic behavior in newly drilled wells.
    Kim MJ; Nriagu J; Haack S
    Chemosphere; 2003 Jul; 52(3):623-33. PubMed ID: 12738300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Particulate arsenic and iron during anoxia in a eutrophic, urban lake.
    Senn DB; Hemond HF
    Environ Toxicol Chem; 2004 Jul; 23(7):1610-6. PubMed ID: 15230312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments.
    Rowland HA; Boothman C; Pancost R; Gault AG; Polya DA; Lloyd JR
    J Environ Qual; 2009; 38(4):1598-607. PubMed ID: 19549936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic remobilization in water treatment adsorbents under reducing conditions: Part I. Incubation study.
    Jing C; Liu S; Meng X
    Sci Total Environ; 2008 Jan; 389(1):188-94. PubMed ID: 17897702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting low-arsenic aquifers in Matlab Upazila, Southeastern Bangladesh.
    von Brömssen M; Jakariya M; Bhattacharya P; Ahmed KM; Hasan MA; Sracek O; Jonsson L; Lundell L; Jacks G
    Sci Total Environ; 2007 Jul; 379(2-3):121-32. PubMed ID: 17113133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.
    Bauer M; Blodau C
    Sci Total Environ; 2006 Feb; 354(2-3):179-90. PubMed ID: 16398994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox transformations and transport of cesium and iodine (-1, 0, +5) in oxidizing and reducing zones of a sand and gravel aquifer.
    Fox PM; Kent DB; Davis JA
    Environ Sci Technol; 2010 Mar; 44(6):1940-6. PubMed ID: 20170159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a scalable model for predicting arsenic transport coupled with oxidation and adsorption reactions.
    Radu T; Kumar A; Clement TP; Jeppu G; Barnett MO
    J Contam Hydrol; 2008 Jan; 95(1-2):30-41. PubMed ID: 17706833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical versus chemical effects on bacterial and bromide transport as determined from on site sediment column pulse experiments.
    Hall JA; Mailloux BJ; Onstott TC; Scheibe TD; Fuller ME; Dong H; DeFlaun MF
    J Contam Hydrol; 2005 Feb; 76(3-4):295-314. PubMed ID: 15683885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive transport modeling of subsurface arsenic removal systems in rural Bangladesh.
    Rahman MM; Bakker M; Patty CH; Hassan Z; Röling WF; Ahmed KM; van Breukelen BM
    Sci Total Environ; 2015 Dec; 537():277-93. PubMed ID: 26282762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near-surface wetland sediments as a source of arsenic release to ground water in Asia.
    Polizzotto ML; Kocar BD; Benner SG; Sampson M; Fendorf S
    Nature; 2008 Jul; 454(7203):505-8. PubMed ID: 18650922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand.
    Chang YY; Song KH; Yang JK
    J Hazard Mater; 2008 Feb; 150(3):565-72. PubMed ID: 17570581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.