These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 16945714)
1. A histologic analysis of the effects of stainless steel and titanium implants adjacent to tendons: an experimental rabbit study. Nazzal A; Lozano-Calderón S; Jupiter JB; Rosenzweig JS; Randolph MA; Lee SG J Hand Surg Am; 2006 Sep; 31(7):1123-30. PubMed ID: 16945714 [TBL] [Abstract][Full Text] [Related]
2. Effects of implant material and plate design on tendon function and morphology. Cohen MS; Turner TM; Urban RM Clin Orthop Relat Res; 2006 Apr; 445():81-90. PubMed ID: 16601410 [TBL] [Abstract][Full Text] [Related]
3. The effects of implant composition on extensor tenosynovitis in a canine distal radius fracture model. Sinicropi SM; Su BW; Raia FJ; Parisien M; Strauch RJ; Rosenwasser MP J Hand Surg Am; 2005 Mar; 30(2):300-7. PubMed ID: 15781352 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the soft tissue interface at titanium implants with different surface treatments: experimental study on rabbits. Ungersböck A; Pohler O; Perren SM Biomed Mater Eng; 1994; 4(4):317-25. PubMed ID: 7950879 [TBL] [Abstract][Full Text] [Related]
5. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates. Krischak GD; Gebhard F; Mohr W; Krivan V; Ignatius A; Beck A; Wachter NJ; Reuter P; Arand M; Kinzl L; Claes LE Arch Orthop Trauma Surg; 2004 Mar; 124(2):104-13. PubMed ID: 14727127 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical comparison between stainless steel, titanium and carbon-fiber reinforced polyetheretherketone volar locking plates for distal radius fractures. Mugnai R; Tarallo L; Capra F; Catani F Orthop Traumatol Surg Res; 2018 Oct; 104(6):877-882. PubMed ID: 29807189 [TBL] [Abstract][Full Text] [Related]
7. Rigid internal fixation with titanium versus bioresorbable miniplates in the repair of mandibular fractures in rabbits. Hochuli-Vieira E; Cabrini Gabrielli MA; Pereira-Filho VA; Gabrielli MF; Padilha JG Int J Oral Maxillofac Surg; 2005 Mar; 34(2):167-73. PubMed ID: 15695046 [TBL] [Abstract][Full Text] [Related]
8. Less rigid internal fixation plates: historical perspectives and new concepts. Woo SL; Lothringer KS; Akeson WH; Coutts RD; Woo YK; Simon BR; Gomez MA J Orthop Res; 1984; 1(4):431-49. PubMed ID: 6491792 [TBL] [Abstract][Full Text] [Related]
9. Mechanical characteristics of locking and compression plate constructs applied dorsally to distal radius fractures. Boswell S; McIff TE; Trease CA; Toby EB J Hand Surg Am; 2007; 32(5):623-9. PubMed ID: 17481999 [TBL] [Abstract][Full Text] [Related]
10. [Titanium, steel and their combination in bone surgery]. Rüedi Th; Perren SM; Pohler O; Riede U Langenbecks Arch Chir; 1975; Suppl():395-8. PubMed ID: 1207267 [TBL] [Abstract][Full Text] [Related]
11. A biomechanical evaluation of different plates for fixation of canine radial osteotomies. Jain R; Podworny N; Hearn T; Richards RR; Schemitsch EH J Trauma; 1998 Jan; 44(1):193-7. PubMed ID: 9464772 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical analysis of the less invasive stabilization system for mechanically unstable fractures of the distal femur: comparison of titanium versus stainless steel and bicortical versus unicortical fixation. Beingessner D; Moon E; Barei D; Morshed S J Trauma; 2011 Sep; 71(3):620-4. PubMed ID: 21610539 [TBL] [Abstract][Full Text] [Related]
13. Release of metal in vivo from stressed and nonstressed maxillofacial fracture plates and screws. Matthew IR; Frame JW Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2000 Jul; 90(1):33-8. PubMed ID: 10884633 [TBL] [Abstract][Full Text] [Related]
14. [Bone remodeling after internal fixation with different stiffness plates: ultrastructural investigation]. Chen YQ Zhonghua Wai Ke Za Zhi; 1991 Apr; 29(4):256-9, 272. PubMed ID: 1874119 [TBL] [Abstract][Full Text] [Related]
15. Complications following internal fixation of unstable distal radius fracture with a palmar locking-plate. Arora R; Lutz M; Hennerbichler A; Krappinger D; Espen D; Gabl M J Orthop Trauma; 2007 May; 21(5):316-22. PubMed ID: 17485996 [TBL] [Abstract][Full Text] [Related]
16. Volar versus dorsal locking plates with and without radial styloid locking plates for the fixation of dorsally comminuted distal radius fractures: A biomechanical study in cadavers. Blythe M; Stoffel K; Jarrett P; Kuster M J Hand Surg Am; 2006 Dec; 31(10):1587-93. PubMed ID: 17145377 [TBL] [Abstract][Full Text] [Related]
17. Comparison of three different plating techniques for the dorsum of the distal radius: a biomechanical study. Peine R; Rikli DA; Hoffmann R; Duda G; Regazzoni P J Hand Surg Am; 2000 Jan; 25(1):29-33. PubMed ID: 10642470 [TBL] [Abstract][Full Text] [Related]
18. A biomechanic comparison of an internal radiocarpal-spanning 2.4-mm locking plate and external fixation in a model of distal radius fractures. Wolf JC; Weil WM; Hanel DP; Trumble TE J Hand Surg Am; 2006 Dec; 31(10):1578-86. PubMed ID: 17145376 [TBL] [Abstract][Full Text] [Related]
19. Biomechanics in uniaxial compression of three distal radius volar plates. Osada D; Fujita S; Tamai K; Iwamoto A; Tomizawa K; Saotome K J Hand Surg Am; 2004 May; 29(3):446-51. PubMed ID: 15140488 [TBL] [Abstract][Full Text] [Related]