These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16945803)

  • 21. Surgical open-chest ventricular defibrillation: triphasic waveforms are superior to biphasic waveforms.
    Zhang Y; Boddicker KA; Davies LR; Jones JL; Kerber RE
    Pacing Clin Electrophysiol; 2004 Jul; 27(7):941-8. PubMed ID: 15271014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks.
    Nikolski VP; Sambelashvili AT; Krinsky VI; Efimov IR
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H412-8. PubMed ID: 14527941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Responses of the transmembrane potential of myocardial cells during a shock.
    Zhou X; Rollins DL; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1995 Apr; 6(4):252-63. PubMed ID: 7647950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
    Cheek ER; Fast VG
    Circ Res; 2004 Feb; 94(2):208-14. PubMed ID: 14670844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atria are more susceptible to electroporation than ventricles: implications for atrial stunning, shock-induced arrhythmia and defibrillation failure.
    Fedorov VV; Kostecki G; Hemphill M; Efimov IR
    Heart Rhythm; 2008 Apr; 5(4):593-604. PubMed ID: 18362029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia.
    Li HG; Jones DL; Yee R; Klein GJ
    J Am Coll Cardiol; 1993 Aug; 22(2):607-14. PubMed ID: 8335836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transmural and endocardial Purkinje activation in pigs before local myocardial activation after defibrillation shocks.
    Dosdall DJ; Cheng KA; Huang J; Allison JS; Allred JD; Smith WM; Ideker RE
    Heart Rhythm; 2007 Jun; 4(6):758-65. PubMed ID: 17556199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional mapping of earliest activation after near-threshold ventricular defibrillation shocks.
    Chattipakorn N; Fotuhi PC; Chattipakorn SC; Ideker RE
    J Cardiovasc Electrophysiol; 2003 Jan; 14(1):65-9. PubMed ID: 12625612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that activation following failed defibrillation is not caused by triggered activity.
    Zheng X; Walcott GP; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 2005 Nov; 16(11):1200-5. PubMed ID: 16302904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of shock-induced changes in transmembrane potential on reentrant waves and outcome during cardioversion of isolated rabbit hearts.
    Evans FG; Ideker RE; Gray RA
    J Cardiovasc Electrophysiol; 2002 Nov; 13(11):1118-27. PubMed ID: 12475103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epicardial activation after unsuccessful defibrillation shocks in dogs.
    Shibata N; Chen PS; Dixon EG; Wolf PD; Danieley ND; Smith WM; Ideker RE
    Am J Physiol; 1988 Oct; 255(4 Pt 2):H902-9. PubMed ID: 3177679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diastolic field stimulation: the role of shock duration in epicardial activation and propagation.
    Woods MC; Uzelac I; Holcomb MR; Wikswo JP; Sidorov VY
    Biophys J; 2013 Jul; 105(2):523-32. PubMed ID: 23870273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks.
    Rodríguez B; Li L; Eason JC; Efimov IR; Trayanova NA
    Circ Res; 2005 Jul; 97(2):168-75. PubMed ID: 15976315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intramural measurement of transmembrane potential in the isolated pig heart: validation of a novel technique.
    Caldwell BJ; Legrice IJ; Hooks DA; Tai DC; Pullan AJ; Smaill BH
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):1001-10. PubMed ID: 16174023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: Dependence on the timing of shock application.
    Raman V; Pollard AE; Fast VG
    Cardiovasc Res; 2007 Jan; 73(1):101-10. PubMed ID: 17134687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period.
    Dillon SM
    Circ Res; 1991 Sep; 69(3):842-56. PubMed ID: 1873877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical recordings of ventricular excitability of frog heart by an extracellular stimulating point electrode.
    Neunlist M; Tung L
    Pacing Clin Electrophysiol; 1994 Oct; 17(10):1641-54. PubMed ID: 7800567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epicardial fiber organization in swine right ventricle and its impact on propagation.
    Vetter FJ; Simons SB; Mironov S; Hyatt CJ; Pertsov AM
    Circ Res; 2005 Feb; 96(2):244-51. PubMed ID: 15618536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atrial defibrillation using temporary epicardial defibrillation stainless steel wire electrodes: studies in the canine sterile pericarditis model.
    Ortiz J; Sokoloski MC; Ayers GM; Cmolik BL; Niwano S; Geha AS; Waldo AL
    J Am Coll Cardiol; 1995 Nov; 26(5):1356-64. PubMed ID: 7594054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical measurements of intramural action potentials in isolated porcine hearts using optrodes.
    Kong W; Fakhari N; Sharifov OF; Ideker RE; Smith WM; Fast VG
    Heart Rhythm; 2007 Nov; 4(11):1430-6. PubMed ID: 17954403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.