These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16945803)

  • 41. The role of photon scattering in optical signal distortion during arrhythmia and defibrillation.
    Bishop MJ; Rodriguez B; Qu F; Efimov IR; Gavaghan DJ; Trayanova NA
    Biophys J; 2007 Nov; 93(10):3714-26. PubMed ID: 17978166
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations and optical mapping.
    Entcheva E; Eason J; Efimov IR; Cheng Y; Malkin R; Claydon F
    J Cardiovasc Electrophysiol; 1998 Sep; 9(9):949-61. PubMed ID: 9786075
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions.
    Plank G; Prassl A; Hofer E; Trayanova NA
    Biophys J; 2008 Mar; 94(5):1904-15. PubMed ID: 17993491
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prolongation and shortening of action potentials by electrical shocks in frog ventricular muscle.
    Knisley SB; Smith WM; Ideker RE
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2348-58. PubMed ID: 8023996
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Virtual electrode-induced reexcitation: A mechanism of defibrillation.
    Cheng Y; Mowrey KA; Van Wagoner DR; Tchou PJ; Efimov IR
    Circ Res; 1999 Nov; 85(11):1056-66. PubMed ID: 10571537
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synchronized repolarization after defibrillation shocks. A possible component of the defibrillation process demonstrated by optical recordings in rabbit heart.
    Dillon SM
    Circulation; 1992 May; 85(5):1865-78. PubMed ID: 1572042
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transmural recording of shock potential gradient fields, early postshock activations, and refibrillation episodes associated with external defibrillation of long-duration ventricular fibrillation in swine.
    Allred JD; Killingsworth CR; Allison JS; Dosdall DJ; Melnick SB; Smith WM; Ideker RE; Walcott GP
    Heart Rhythm; 2008 Nov; 5(11):1599-606. PubMed ID: 18984539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of defibrillation shocks delivered directly over a major coronary artery.
    Lucy SD; Jones DL; Klein GJ
    Pacing Clin Electrophysiol; 1992 Nov; 15(11 Pt 1):1711-9. PubMed ID: 1279539
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Success and failure of biphasic shocks: results of bidomain simulations.
    Anderson C; Trayanova NA
    Math Biosci; 2001 Dec; 174(2):91-109. PubMed ID: 11730859
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells.
    Knisley SB; Blitchington TF; Hill BC; Grant AO; Smith WM; Pilkington TC; Ideker RE
    Circ Res; 1993 Feb; 72(2):255-70. PubMed ID: 8418982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electroporation in a model of cardiac defibrillation.
    Ashihara T; Yao T; Namba T; Ito M; Ikeda T; Kawase A; Toda S; Suzuki T; Inagaki M; Sugimachi M; Kinoshita M; Nakazawa K
    J Cardiovasc Electrophysiol; 2001 Dec; 12(12):1393-403. PubMed ID: 11797997
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of dye affinity in optical measurements of Cai(2+) transients in cardiac muscle.
    Kong W; Fast VG
    Am J Physiol Heart Circ Physiol; 2014 Jul; 307(1):H73-9. PubMed ID: 24791783
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of shock-induced action potential extension during acute regional ischemia in rabbit hearts.
    Knisley SB; Holley LK
    J Cardiovasc Electrophysiol; 1995 Oct; 6(10 Pt 1):775-85. PubMed ID: 8542074
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bidomain Predictions of Virtual Electrode-Induced Make and Break Excitations around Blood Vessels.
    Connolly AJ; Vigmond E; Bishop MJ
    Front Bioeng Biotechnol; 2017; 5():18. PubMed ID: 28396856
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How epicardial electrodes influence the transmembrane potential during a strong shock.
    Patel SG; Roth BJ
    Ann Biomed Eng; 2001 Nov; 29(11):1028-31. PubMed ID: 11791674
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Upper limit of vulnerability in a defibrillation model of the rabbit ventricles.
    Rodríguez B; Trayanova N
    J Electrocardiol; 2003; 36 Suppl():51-6. PubMed ID: 14716592
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of effects of internal countershock by direct cardiac recordings during normal rhythm.
    Colavita PG; Wolf P; Smith WM; Bartram FR; Hardage M; Ideker RE
    Am J Physiol; 1986 May; 250(5 Pt 2):H736-40. PubMed ID: 3706548
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Success and failure of the defibrillation shock: insights from a simulation study.
    Skouibine K; Trayanova N; Moore P
    J Cardiovasc Electrophysiol; 2000 Jul; 11(7):785-96. PubMed ID: 10921796
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of a bath on the epicardial transmembrane potential during internal defibrillation shocks.
    Latimer DC; Roth BJ
    IEEE Trans Biomed Eng; 1999 May; 46(5):612-4. PubMed ID: 10230141
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Myocardial discontinuities: a substrate for producing virtual electrodes that directly excite the myocardium by shocks.
    White JB; Walcott GP; Pollard AE; Ideker RE
    Circulation; 1998 May; 97(17):1738-45. PubMed ID: 9591769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.