These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2358 related articles for article (PubMed ID: 16945915)
1. Consistent resting-state networks across healthy subjects. Damoiseaux JS; Rombouts SA; Barkhof F; Scheltens P; Stam CJ; Smith SM; Beckmann CF Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13848-53. PubMed ID: 16945915 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks. Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593 [TBL] [Abstract][Full Text] [Related]
3. [Functional connectivity analysis of the brain network using resting-state FMRI]. Hayashi T Brain Nerve; 2011 Dec; 63(12):1307-18. PubMed ID: 22147450 [TBL] [Abstract][Full Text] [Related]
4. Detecting resting-state brain activity by spontaneous cerebral blood volume fluctuations using whole brain vascular space occupancy imaging. Miao X; Gu H; Yan L; Lu H; Wang DJ; Zhou XJ; Zhuo Y; Yang Y Neuroimage; 2014 Jan; 84():575-84. PubMed ID: 24055705 [TBL] [Abstract][Full Text] [Related]
5. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. Leonardi N; Richiardi J; Gschwind M; Simioni S; Annoni JM; Schluep M; Vuilleumier P; Van De Ville D Neuroimage; 2013 Dec; 83():937-50. PubMed ID: 23872496 [TBL] [Abstract][Full Text] [Related]
7. Reliability comparison of spontaneous brain activities between BOLD and CBF contrasts in eyes-open and eyes-closed resting states. Zou Q; Miao X; Liu D; Wang DJ; Zhuo Y; Gao JH Neuroimage; 2015 Nov; 121():91-105. PubMed ID: 26226087 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks. Musso F; Brinkmeyer J; Mobascher A; Warbrick T; Winterer G Neuroimage; 2010 Oct; 52(4):1149-61. PubMed ID: 20139014 [TBL] [Abstract][Full Text] [Related]
9. Brain modifications after acute alcohol consumption analyzed by resting state fMRI. Spagnolli F; Cerini R; Cardobi N; Barillari M; Manganotti P; Storti S; Mucelli RP Magn Reson Imaging; 2013 Oct; 31(8):1325-30. PubMed ID: 23680187 [TBL] [Abstract][Full Text] [Related]
10. Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks. Li YC; Huang YA J Magn Reson Imaging; 2014 May; 39(5):1118-25. PubMed ID: 24027126 [TBL] [Abstract][Full Text] [Related]
11. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Shmueli K; van Gelderen P; de Zwart JA; Horovitz SG; Fukunaga M; Jansma JM; Duyn JH Neuroimage; 2007 Nov; 38(2):306-20. PubMed ID: 17869543 [TBL] [Abstract][Full Text] [Related]
13. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254 [TBL] [Abstract][Full Text] [Related]
14. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches. Kang J; Wang L; Yan C; Wang J; Liang X; He Y Neuroimage; 2011 Jun; 56(3):1222-34. PubMed ID: 21420500 [TBL] [Abstract][Full Text] [Related]
15. Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Fukunaga M; Horovitz SG; van Gelderen P; de Zwart JA; Jansma JM; Ikonomidou VN; Chu R; Deckers RH; Leopold DA; Duyn JH Magn Reson Imaging; 2006 Oct; 24(8):979-92. PubMed ID: 16997067 [TBL] [Abstract][Full Text] [Related]
16. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI. Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793 [TBL] [Abstract][Full Text] [Related]
17. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. De Luca M; Beckmann CF; De Stefano N; Matthews PM; Smith SM Neuroimage; 2006 Feb; 29(4):1359-67. PubMed ID: 16260155 [TBL] [Abstract][Full Text] [Related]
18. Scale-invariant rearrangement of resting state networks in the human brain under sustained stimulation. Tommasin S; Mascali D; Moraschi M; Gili T; Hassan IE; Fratini M; DiNuzzo M; Wise RG; Mangia S; Macaluso E; Giove F Neuroimage; 2018 Oct; 179():570-581. PubMed ID: 29908935 [TBL] [Abstract][Full Text] [Related]
19. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain. Sforazzini F; Schwarz AJ; Galbusera A; Bifone A; Gozzi A Neuroimage; 2014 Feb; 87():403-15. PubMed ID: 24080504 [TBL] [Abstract][Full Text] [Related]
20. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study. Raemaekers M; Schellekens W; van Wezel RJ; Petridou N; Kristo G; Ramsey NF Neuroimage; 2014 Jan; 84():911-21. PubMed ID: 24099850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]