BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16946252)

  • 1. The effect of penicillin on Chlamydia trachomatis DNA replication.
    Lambden PR; Pickett MA; Clarke IN
    Microbiology (Reading); 2006 Sep; 152(Pt 9):2573-2578. PubMed ID: 16946252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle.
    Skilton RJ; Cutcliffen LT; Barlow D; Wang Y; Salim O; Lambden PR; Clarke IN
    PLoS One; 2009 Nov; 4(11):e7723. PubMed ID: 19893744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector.
    Wang Y; Kahane S; Cutcliffe LT; Skilton RJ; Lambden PR; Clarke IN
    PLoS Pathog; 2011 Sep; 7(9):e1002258. PubMed ID: 21966270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle.
    Shaw EI; Dooley CA; Fischer ER; Scidmore MA; Fields KA; Hackstadt T
    Mol Microbiol; 2000 Aug; 37(4):913-25. PubMed ID: 10972811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection.
    Gérard HC; Krausse-Opatz B; Wang Z; Rudy D; Rao JP; Zeidler H; Schumacher HR; Whittum-Hudson JA; Köhler L; Hudson AP
    Mol Microbiol; 2001 Aug; 41(3):731-41. PubMed ID: 11532140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Commonly prescribed β-lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically relevant concentrations.
    Kintner J; Lajoie D; Hall J; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():44. PubMed ID: 24783061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-exposure of infected human endometrial epithelial cells to penicillin in vitro renders Chlamydia trachomatis refractory to azithromycin.
    Wyrick PB; Knight ST
    J Antimicrob Chemother; 2004 Jul; 54(1):79-85. PubMed ID: 15163653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis.
    Muschiol S; Bailey L; Gylfe A; Sundin C; Hultenby K; Bergström S; Elofsson M; Wolf-Watz H; Normark S; Henriques-Normark B
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14566-71. PubMed ID: 16973741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression, processing, and localization of PmpD of Chlamydia trachomatis Serovar L2 during the chlamydial developmental cycle.
    Kiselev AO; Stamm WE; Yates JR; Lampe MF
    PLoS One; 2007 Jun; 2(6):e568. PubMed ID: 17593967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism.
    Fields KA; Hackstadt T
    Mol Microbiol; 2000 Dec; 38(5):1048-60. PubMed ID: 11123678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The protease inhibitor JO146 demonstrates a critical role for CtHtrA for Chlamydia trachomatis reversion from penicillin persistence.
    Ong VA; Marsh JW; Lawrence A; Allan JA; Timms P; Huston WM
    Front Cell Infect Microbiol; 2013; 3():100. PubMed ID: 24392355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different growth rates of Chlamydia trachomatis biovars reflect pathotype.
    Miyairi I; Mahdi OS; Ouellette SP; Belland RJ; Byrne GI
    J Infect Dis; 2006 Aug; 194(3):350-7. PubMed ID: 16826483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
    Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication-dependent size reduction precedes differentiation in Chlamydia trachomatis.
    Lee JK; Enciso GA; Boassa D; Chander CN; Lou TH; Pairawan SS; Guo MC; Wan FYM; Ellisman MH; Sütterlin C; Tan M
    Nat Commun; 2018 Jan; 9(1):45. PubMed ID: 29298975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Proteomics of the Infectious and Replicative Forms of Chlamydia trachomatis.
    Skipp PJ; Hughes C; McKenna T; Edwards R; Langridge J; Thomson NR; Clarke IN
    PLoS One; 2016; 11(2):e0149011. PubMed ID: 26871455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural analysis of the effects of erythromycin on the morphology and developmental cycle of Chlamydia trachomatis HAR-13.
    Clark RB; Schatzki PF; Dalton HP
    Arch Microbiol; 1982 Dec; 133(4):278-82. PubMed ID: 7171287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro model of azithromycin-induced persistent Chlamydia trachomatis infection.
    Xue Y; Zheng H; Mai Z; Qin X; Chen W; Huang T; Chen D; Zheng L
    FEMS Microbiol Lett; 2017 Aug; 364(14):. PubMed ID: 28854672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural effect of penicillin and cycloheximide on Chlamydia trachomatis strain HAR-13.
    Clark RB; Schatzki PF; Dalton HP
    Med Microbiol Immunol; 1982; 171(3):151-9. PubMed ID: 7162456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure of the murine cervix following infection with Chlamydia trachomatis.
    Phillips DM; Burillo CA
    Tissue Cell; 1998 Aug; 30(4):446-52. PubMed ID: 9787477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIV-1 does not significantly influence Chlamydia trachomatis serovar L2 replication in vitro.
    Broadbent A; Horner P; Wills G; Ling A; Carzaniga R; McClure M
    Microbes Infect; 2011 Jun; 13(6):575-84. PubMed ID: 21315827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.