These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 16946262)
1. Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush. Roosjen A; Busscher HJ; Norde W; van der Mei HC Microbiology (Reading); 2006 Sep; 152(Pt 9):2673-2682. PubMed ID: 16946262 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Roosjen A; Kaper HJ; van der Mei HC; Norde W; Busscher HJ Microbiology (Reading); 2003 Nov; 149(Pt 11):3239-3246. PubMed ID: 14600236 [TBL] [Abstract][Full Text] [Related]
3. Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber. Roosjen A; Boks NP; van der Mei HC; Busscher HJ; Norde W Colloids Surf B Biointerfaces; 2005 Nov; 46(1):1-6. PubMed ID: 16198548 [TBL] [Abstract][Full Text] [Related]
4. Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Roosjen A; van der Mei HC; Busscher HJ; Norde W Langmuir; 2004 Dec; 20(25):10949-55. PubMed ID: 15568845 [TBL] [Abstract][Full Text] [Related]
5. Bacterial adhesion and growth on a polymer brush-coating. Nejadnik MR; van der Mei HC; Norde W; Busscher HJ Biomaterials; 2008 Oct; 29(30):4117-21. PubMed ID: 18674814 [TBL] [Abstract][Full Text] [Related]
6. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating: suppression of protein adsorption and bacterial adhesion. Holmes PF; Currie EP; Thies JC; van der Mei HC; Busscher HJ; Norde W J Biomed Mater Res A; 2009 Dec; 91(3):824-33. PubMed ID: 19051305 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic prediction of growth temperature dependence in the adhesion of Pseudomonas aeruginosa and Staphylococcus aureus to stainless steel and polycarbonate. Abdallah M; Benoliel C; Jama C; Drider D; Dhulster P; Chihib NE J Food Prot; 2014 Jul; 77(7):1116-26. PubMed ID: 24988017 [TBL] [Abstract][Full Text] [Related]
8. Initial bacterial attachment in slow flowing systems: effects of cell and substrate surface properties. Wang H; Sodagari M; Chen Y; He X; Newby BM; Ju LK Colloids Surf B Biointerfaces; 2011 Oct; 87(2):415-22. PubMed ID: 21715146 [TBL] [Abstract][Full Text] [Related]
9. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Bruinsma GM; van der Mei HC; Busscher HJ Biomaterials; 2001 Dec; 22(24):3217-24. PubMed ID: 11700793 [TBL] [Abstract][Full Text] [Related]
10. Bacterial adhesion to glass and metal-oxide surfaces. Li B; Logan BE Colloids Surf B Biointerfaces; 2004 Jul; 36(2):81-90. PubMed ID: 15261011 [TBL] [Abstract][Full Text] [Related]
11. Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa. Atabek A; Camesano TA J Bacteriol; 2007 Dec; 189(23):8503-9. PubMed ID: 17905997 [TBL] [Abstract][Full Text] [Related]
12. Water is a poor solvent for densely grafted poly(ethylene oxide) chains: a conclusion drawn from a self-consistent field theory-based analysis of neutron reflectivity and surface pressure-area isotherm data. Lee H; Kim DH; Witte KN; Ohn K; Choi J; Akgun B; Satija S; Won YY J Phys Chem B; 2012 Jun; 116(24):7367-78. PubMed ID: 22616550 [TBL] [Abstract][Full Text] [Related]
13. Influence of poly(ethylene oxide)-based copolymer on protein adsorption and bacterial adhesion on stainless steel: modulation by surface hydrophobicity. Yang Y; Rouxhet PG; Chudziak D; Telegdi J; Dupont-Gillain CC Bioelectrochemistry; 2014 Jun; 97():127-36. PubMed ID: 24650936 [TBL] [Abstract][Full Text] [Related]
14. Factors influencing the adhesive properties of Pseudomonas aeruginosa. Tylewska S; Hryniewicz W; KostrzyĆska M; Izdebska-Szymona K Acta Microbiol Pol; 1988; 37(2):183-90. PubMed ID: 2467529 [TBL] [Abstract][Full Text] [Related]
15. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Boks NP; Norde W; van der Mei HC; Busscher HJ Microbiology (Reading); 2008 Oct; 154(Pt 10):3122-3133. PubMed ID: 18832318 [TBL] [Abstract][Full Text] [Related]
16. Force-Averaging DLVO Model Predictions of the Adhesion Strengths Quantified for Pathogenic Eskhan AO; Abu-Lail NI Langmuir; 2020 Aug; 36(30):8947-8964. PubMed ID: 32633976 [TBL] [Abstract][Full Text] [Related]
17. The effect of Bechar A; Er-Rahmani S; Hassi M; Sadiki M; El Abed S; Ouaddi O; Tizar F; Alouani M; Ibnsouda Koraichi S Biofouling; 2024 Sep; 40(8):447-466. PubMed ID: 39034852 [TBL] [Abstract][Full Text] [Related]
18. Effects of aqueous polymeric surfactants on silicone-hydrogel soft- contact-lens wettability and bacterial adhesion of Pseudomonas aeruginosa. Tran VB; Sung YS; Copley K; Radke CJ Cont Lens Anterior Eye; 2012 Aug; 35(4):155-62. PubMed ID: 22456099 [TBL] [Abstract][Full Text] [Related]
19. Influence of interaction energy between Si-doped diamond-like carbon films and bacteria on bacterial adhesion under flow conditions. Shao W; Zhao Q; Abel EW; Bendavid A J Biomed Mater Res A; 2010 Apr; 93(1):133-9. PubMed ID: 19536831 [TBL] [Abstract][Full Text] [Related]
20. Polydopamine-Mediated Immobilization of Alginate Lyase to Prevent P. aeruginosa Adhesion. Alves D; Sileika T; Messersmith PB; Pereira MO Macromol Biosci; 2016 Sep; 16(9):1301-10. PubMed ID: 27198822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]