These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16946608)

  • 1. Microbiological assessment of occlusal brown-spot lesions in primary molars.
    Arif N; Beighton D; Sheehy EC
    Caries Res; 2006; 40(5):398-402. PubMed ID: 16946608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between fissure discoloration, Diagnodent measurements, and caries depth: an in vitro study.
    Francescut P; Lussi A
    Pediatr Dent; 2003; 25(6):559-64. PubMed ID: 14733470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Occult dentine lesions under a clinically intact enamel surface. A bacteriological investigation].
    Weerheijm KL; de Soet JJ; van Amerongen WE; de Graaff J
    Ned Tijdschr Tandheelkd; 1992 Jun; 99(6):213-6. PubMed ID: 11820134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The isolation of bifidobacteria from occlusal carious lesions in children and adults.
    Mantzourani M; Gilbert SC; Sulong HN; Sheehy EC; Tank S; Fenlon M; Beighton D
    Caries Res; 2009; 43(4):308-13. PubMed ID: 19494490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occlusal hidden caries: a bacteriological profile.
    Weerheijm KL; de Soet JJ; de Graaff J; van Amerongen WE
    ASDC J Dent Child; 1990; 57(6):428-32. PubMed ID: 2258503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial composition and red fluorescence of plaque in relation to primary and secondary caries next to composite: an in situ study.
    Thomas RZ; van der Mei HC; van der Veen MH; de Soet JJ; Huysmans MC
    Oral Microbiol Immunol; 2008 Feb; 23(1):7-13. PubMed ID: 18173792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative fluorescence spectroscopy shows differences in noncavitated enamel lesions.
    Buchalla W
    Caries Res; 2005; 39(2):150-6. PubMed ID: 15741729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiological validation of assessments of caries activity during cavity preparation.
    Kidd EA; Joyston-Bechal S; Beighton D
    Caries Res; 1993; 27(5):402-8. PubMed ID: 8242678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical, histological and microbiological study of hand-excavated carious dentine in extracted permanent teeth.
    Bönecker M; Grossman E; Cleaton-Jones PE; Parak R
    SADJ; 2003 Aug; 58(7):273-8. PubMed ID: 14649040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo comparison of reduction in bacterial count after caries excavation with 3 different techniques.
    Zakirulla M; Uloopi KS; Subba Reddy VV
    J Dent Child (Chic); 2011; 78(1):31-5. PubMed ID: 22041006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical study on the effect of professional cleaning of occlusal tooth surfaces on laser fluorescence measurements.
    Anttonen V; Seppä L; Hausen H
    Caries Res; 2005; 39(4):280-3. PubMed ID: 15942187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of selected microflora of plaque and underlying carious dentine associated with primary root caries lesions.
    Beighton D; Lynch E
    Caries Res; 1995; 29(2):154-8. PubMed ID: 7728831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural and microbiological analysis of the dentin layers affected by caries lesions in primary molars treated by minimal intervention.
    Wambier DS; dos Santos FA; Guedes-Pinto AC; Jaeger RG; Simionato MR
    Pediatr Dent; 2007; 29(3):228-34. PubMed ID: 17688020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microbiological assessment of polymer and conventional carbide burs in caries removal.
    Isik EE; Olmez A; Akca G; Sultan N
    Pediatr Dent; 2010; 32(4):316-23. PubMed ID: 20836951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiological analysis after complete or partial removal of carious dentin in primary teeth: a randomized clinical trial.
    Lula EC; Monteiro-Neto V; Alves CM; Ribeiro CC
    Caries Res; 2009; 43(5):354-8. PubMed ID: 19648746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro assessment of methods of applying the electrical caries monitor for the detection of occlusal caries.
    Ellwood RP; Côrtes DF
    Caries Res; 2004; 38(1):45-53. PubMed ID: 14684977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The predominant cultivable flora of carious plaque and carious dentine.
    Loesche WJ; Syed SA
    Caries Res; 1973; 7(3):201-16. PubMed ID: 4518167
    [No Abstract]   [Full Text] [Related]  

  • 18. Fluorescence-controlled Er:YAG laser for caries removal in permanent teeth: a randomized clinical trial.
    Dommisch H; Peus K; Kneist S; Krause F; Braun A; Hedderich J; Jepsen S; Eberhard J
    Eur J Oral Sci; 2008 Apr; 116(2):170-6. PubMed ID: 18353012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of examiner's clinical experience in detecting occlusal caries lesions in primary teeth.
    Bengtson AL; Gomes AC; Mendes FM; Cichello LR; Bengtson NG; Pinheiro SL
    Pediatr Dent; 2005; 27(3):238-43. PubMed ID: 16173230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of drying time and the presence of plaque on the in vitro performance of laser fluorescence in occlusal caries of primary teeth.
    Mendes FM; Hissadomi M; Imparato JC
    Caries Res; 2004; 38(2):104-8. PubMed ID: 14767166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.