BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16946738)

  • 1. CFTR: helping to acidify macrophage lysosomes.
    Swanson J
    Nat Cell Biol; 2006 Sep; 8(9):908-9. PubMed ID: 16946738
    [No Abstract]   [Full Text] [Related]  

  • 2. CFTR regulates phagosome acidification in macrophages and alters bactericidal activity.
    Di A; Brown ME; Deriy LV; Li C; Szeto FL; Chen Y; Huang P; Tong J; Naren AP; Bindokas V; Palfrey HC; Nelson DJ
    Nat Cell Biol; 2006 Sep; 8(9):933-44. PubMed ID: 16921366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cystic fibrosis transmembrane conductance regulator-independent phagosomal acidification in macrophages.
    Haggie PM; Verkman AS
    J Biol Chem; 2007 Oct; 282(43):31422-8. PubMed ID: 17724021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells.
    Liu J; Lu W; Guha S; Baltazar GC; Coffey EE; Laties AM; Rubenstein RC; Reenstra WW; Mitchell CH
    Am J Physiol Cell Physiol; 2012 Jul; 303(2):C160-9. PubMed ID: 22572847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran.
    Hughes LK; Ju M; Sheppard DN
    Mol Membr Biol; 2008 Sep; 25(6-7):528-38. PubMed ID: 18989824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophil elastase-regulated macrophage sheddome/secretome and phagocytic failure.
    Ma J; Kummarapurugu AB; Hawkridge A; Ghosh S; Zheng S; Voynow JA
    Am J Physiol Lung Cell Mol Physiol; 2021 Sep; 321(3):L555-L565. PubMed ID: 34261337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection.
    Zhang Y; Li X; Grassmé H; Döring G; Gulbins E
    J Immunol; 2010 May; 184(9):5104-11. PubMed ID: 20351190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis.
    Teichgräber V; Ulrich M; Endlich N; Riethmüller J; Wilker B; De Oliveira-Munding CC; van Heeckeren AM; Barr ML; von Kürthy G; Schmid KW; Weller M; Tümmler B; Lang F; Grassme H; Döring G; Gulbins E
    Nat Med; 2008 Apr; 14(4):382-91. PubMed ID: 18376404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of CFTR, Pseudomonas aeruginosa and Toll-like receptors in cystic fibrosis lung inflammation.
    Buchanan PJ; Ernst RK; Elborn JS; Schock B
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):863-7. PubMed ID: 19614608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages.
    Nguyen L; Pieters J
    Trends Cell Biol; 2005 May; 15(5):269-76. PubMed ID: 15866031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-aminoazaheterocyclic-methylglyoxal adducts do not inhibit cystic fibrosis transmembrane conductance regulator chloride channel activity.
    Sonawane ND; Zegarra-Moran O; Namkung W; Galietta LJ; Verkman AS
    J Pharmacol Exp Ther; 2008 May; 325(2):529-35. PubMed ID: 18272811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A time-saving biological test to evaluate phagosome-lysosome fusion in cells.
    Le Pocher H; Raoult D
    Anal Biochem; 1996 Jul; 238(2):203-5. PubMed ID: 8660612
    [No Abstract]   [Full Text] [Related]  

  • 13. Sendai virus-mediated CFTR gene transfer to the airway epithelium.
    Ferrari S; Griesenbach U; Iida A; Farley R; Wright AM; Zhu J; Munkonge FM; Smith SN; You J; Ban H; Inoue M; Chan M; Singh C; Verdon B; Argent BE; Wainwright B; Jeffery PK; Geddes DM; Porteous DJ; Hyde SC; Gray MA; Hasegawa M; Alton EW
    Gene Ther; 2007 Oct; 14(19):1371-9. PubMed ID: 17597790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel improvement of sodium and chloride transport defects by miglustat (n-butyldeoxynojyrimicin) in cystic fibrosis epithelial cells.
    Noël S; Wilke M; Bot AG; De Jonge HR; Becq F
    J Pharmacol Exp Ther; 2008 Jun; 325(3):1016-23. PubMed ID: 18309088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin.
    Jayachandran R; Sundaramurthy V; Combaluzier B; Mueller P; Korf H; Huygen K; Miyazaki T; Albrecht I; Massner J; Pieters J
    Cell; 2007 Jul; 130(1):37-50. PubMed ID: 17632055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient assembly of F-actin by phagosomes delays phagosome fusion with lysosomes in cargo-overloaded macrophages.
    Liebl D; Griffiths G
    J Cell Sci; 2009 Aug; 122(Pt 16):2935-45. PubMed ID: 19638408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes.
    Fernández-Arenas E; Bleck CK; Nombela C; Gil C; Griffiths G; Diez-Orejas R
    Cell Microbiol; 2009 Apr; 11(4):560-89. PubMed ID: 19134116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defective formation of PKA/CnA-dependent annexin 2-S100A10/CFTR complex in DeltaF508 cystic fibrosis cells.
    Borthwick LA; Riemen C; Goddard C; Colledge WH; Mehta A; Gerke V; Muimo R
    Cell Signal; 2008 Jun; 20(6):1073-83. PubMed ID: 18346874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional expression of cystic fibrosis transmembrane conductance regulator in rat oviduct epithelium.
    Chen M; Du J; Jiang W; Zuo W; Wang F; Li M; Chan H; Zhou W
    Acta Biochim Biophys Sin (Shanghai); 2008 Oct; 40(10):864-72. PubMed ID: 18850051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of CFTR from a ciliated cell-specific promoter is ineffective at correcting nasal potential difference in CF mice.
    Ostrowski LE; Yin W; Diggs PS; Rogers TD; O'Neal WK; Grubb BR
    Gene Ther; 2007 Oct; 14(20):1492-501. PubMed ID: 17637798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.