BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 1694782)

  • 1. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin.
    Busse R; Mülsch A
    FEBS Lett; 1990 Jun; 265(1-2):133-6. PubMed ID: 1694782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular mechanisms controlling EDRF/NO formation in endothelial cells.
    Busse R; Lückhoff A; Mülsch A
    Basic Res Cardiol; 1991; 86 Suppl 2():7-16. PubMed ID: 1719954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells.
    Förstermann U; Pollock JS; Schmidt HH; Heller M; Murad F
    Proc Natl Acad Sci U S A; 1991 Mar; 88(5):1788-92. PubMed ID: 1705708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages.
    Gross SS; Jaffe EA; Levi R; Kilbourn RG
    Biochem Biophys Res Commun; 1991 Aug; 178(3):823-9. PubMed ID: 1714727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual regulation of cGMP formation by calcium in pancreatic acinar cells.
    Gukovskaya AS; Pandol SJ
    Am J Physiol; 1995 Jun; 268(6 Pt 1):G900-7. PubMed ID: 7541946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitors of calmodulin impair the constitutive but not the inducible nitric oxide synthase activity in the rat aorta.
    Schini VB; Vanhoutte PM
    J Pharmacol Exp Ther; 1992 May; 261(2):553-9. PubMed ID: 1374468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. Cofactor-role of tetrahydrobiopterin.
    Mayer B; John M; Böhme E
    FEBS Lett; 1990 Dec; 277(1-2):215-9. PubMed ID: 1702732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+/calmodulin-dependent nitric oxide synthase activity in the human cervix carcinoma cell line ME-180.
    Werner-Felmayer G; Werner ER; Fuchs D; Hausen A; Mayer B; Reibnegger G; Weiss G; Wachter H
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):357-61. PubMed ID: 7678733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-dependent inhibition of constitutive nitric oxide synthase.
    Mittal CK; Jadhav AL
    Biochem Biophys Res Commun; 1994 Aug; 203(1):8-15. PubMed ID: 7521166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide synthesis in endothelial cytosol: evidence for a calcium-dependent and a calcium-independent mechanism.
    Mülsch A; Bassenge E; Busse R
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Dec; 340(6 Pt 2):767-70. PubMed ID: 2576763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of endothelium-derived relaxing factor: a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts L-arginine into an activator of soluble guanylyl cyclase.
    Mayer B; Schmidt K; Humbert P; Böhme E
    Biochem Biophys Res Commun; 1989 Oct; 164(2):678-85. PubMed ID: 2573351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands.
    Palacios M; Knowles RG; Palmer RM; Moncada S
    Biochem Biophys Res Commun; 1989 Dec; 165(2):802-9. PubMed ID: 2480784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation of rat thoracic aorta induced by the Ca(2+)-ATPase inhibitor, cyclopiazonic acid, possibly through nitric oxide formation.
    Moritoki H; Hisayama T; Takeuchi S; Kondoh W; Imagawa M
    Br J Pharmacol; 1994 Mar; 111(3):655-62. PubMed ID: 7517325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isometric contraction increases endothelial nitric oxide synthase activity via a calmodulin antagonist-sensitive pathway in rat aorta.
    López RM; Castillo C; Castillo EF
    Vascul Pharmacol; 2009; 50(1-2):14-9. PubMed ID: 18778795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dendritic peptide neurogranin can regulate a calmodulin-dependent target.
    Martzen MR; Slemmon JR
    J Neurochem; 1995 Jan; 64(1):92-100. PubMed ID: 7528268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional coupling of a Ca2+/calmodulin-dependent nitric oxide synthase and a soluble guanylyl cyclase in vertebrate photoreceptor cells.
    Koch KW; Lambrecht HG; Haberecht M; Redburn D; Schmidt HH
    EMBO J; 1994 Jul; 13(14):3312-20. PubMed ID: 7519146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective activation and inhibition of calmodulin-dependent enzymes by a calmodulin-like protein found in human epithelial cells.
    Edman CF; George SE; Means AR; Schulman H; Yaswen P
    Eur J Biochem; 1994 Dec; 226(2):725-30. PubMed ID: 7528142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New signaling mechanism of angiotensin II in neuroblastoma neuro-2A cells: activation of soluble guanylyl cyclase via nitric oxide synthesis.
    Chaki S; Inagami T
    Mol Pharmacol; 1993 Apr; 43(4):603-8. PubMed ID: 7682650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a calcium/calmodulin-dependent protein phosphatase in the Limulus nervous tissue and its light regulation in the lateral eye.
    Ellis DZ; Edwards SC
    Vis Neurosci; 1994; 11(5):851-60. PubMed ID: 7947399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells.
    Hirata Y; Emori T; Eguchi S; Kanno K; Imai T; Ohta K; Marumo F
    J Clin Invest; 1993 Apr; 91(4):1367-73. PubMed ID: 7682570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.