These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1694800)

  • 1. XK endo B is preferentially expressed in several induced embryonic tissues during the development of Xenopus laevis.
    LaFlamme SE; Dawid IB
    Differentiation; 1990 Mar; 43(1):1-9. PubMed ID: 1694800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xenopus endo B is a keratin preferentially expressed in the embryonic notochord.
    LaFlamme SE; Jamrich M; Richter K; Sargent TD; Dawid IB
    Genes Dev; 1988 Jul; 2(7):853-62. PubMed ID: 2463213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis.
    LaFlamme SE; Dawid IB
    Dev Biol; 1990 Feb; 137(2):414-8. PubMed ID: 1689262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis.
    Godsave SF; Anderton BH; Wylie CC
    J Embryol Exp Morphol; 1986 Sep; 97():201-23. PubMed ID: 2432146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between SPARC and tubulin in Xenopus.
    Huynh MH; Sodek K; Lee H; Ringuette M
    Cell Tissue Res; 2004 Sep; 317(3):313-7. PubMed ID: 15322908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of PDGF A and PDGFR alpha mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells.
    Ho L; Symes K; Yordán C; Gudas LJ; Mercola M
    Mech Dev; 1994 Dec; 48(3):165-74. PubMed ID: 7893600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of an epidermal antigen used to study tissue induction in the early Xenopus laevis embryo.
    Akers RM; Phillips CR; Wessells NK
    Science; 1986 Feb; 231(4738):613-6. PubMed ID: 3945801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunocytochemical analysis of embryonic compartmentation with a monoclonal antibody against a cytokeratin-related antigen.
    Grunwald GB; Gilbert SF; Brewer K; Cleland L; Kawai M
    Histochemistry; 1990; 94(5):545-53. PubMed ID: 1704360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signals from the dorsal blastopore lip region during gastrulation bias the ectoderm toward a nonepidermal pathway of differentiation in Xenopus laevis.
    Savage R; Phillips CR
    Dev Biol; 1989 May; 133(1):157-68. PubMed ID: 2651180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of ectoderm and endoderm from sea urchin pluteus larvae and demonstration of germ layer-specific antigens.
    McClay DR; Marchase RB
    Dev Biol; 1979 Aug; 71(2):289-96. PubMed ID: 387500
    [No Abstract]   [Full Text] [Related]  

  • 11. Xema, a foxi-class gene expressed in the gastrula stage Xenopus ectoderm, is required for the suppression of mesendoderm.
    Suri C; Haremaki T; Weinstein DC
    Development; 2005 Jun; 132(12):2733-42. PubMed ID: 15901660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and developmental expression of the Xenopus Nkx6 genes.
    Zhao S; Jiang H; Wang W; Mao B
    Dev Genes Evol; 2007 Jun; 217(6):477-83. PubMed ID: 17450377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel gene expression domains reveal early patterning of the Xenopus endoderm.
    Costa RM; Mason J; Lee M; Amaya E; Zorn AM
    Gene Expr Patterns; 2003 Aug; 3(4):509-19. PubMed ID: 12915320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression sequences and distribution of two primary cell adhesion molecules during embryonic development of Xenopus laevis.
    Levi G; Crossin KL; Edelman GM
    J Cell Biol; 1987 Nov; 105(5):2359-72. PubMed ID: 3680386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis.
    Jamrich M; Sargent TD; Dawid IB
    Genes Dev; 1987 Apr; 1(2):124-32. PubMed ID: 2445625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis.
    Davidson LA; Keller R; DeSimone DW
    Dev Dyn; 2004 Dec; 231(4):888-95. PubMed ID: 15517579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forces driving cell sorting in the amphibian embryo.
    Winklbauer R; Parent SE
    Mech Dev; 2017 Apr; 144(Pt A):81-91. PubMed ID: 27697520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential display analysis of gene expression in developing embryos of Xenopus laevis.
    Adati N; Ito T; Koga C; Kito K; Sakaki Y; Shiokawa K
    Biochim Biophys Acta; 1995 May; 1262(1):43-51. PubMed ID: 7772598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell migration in the Xenopus gastrula.
    Huang Y; Winklbauer R
    Wiley Interdiscip Rev Dev Biol; 2018 Nov; 7(6):e325. PubMed ID: 29944210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thrombospondins in early Xenopus embryos: dynamic patterns of expression suggest diverse roles in nervous system, notochord, and muscle development.
    Urry LA; Whittaker CA; Duquette M; Lawler J; DeSimone DW
    Dev Dyn; 1998 Apr; 211(4):390-407. PubMed ID: 9566958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.