These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16948156)

  • 61. Folding mechanisms of proteins with high sequence identity but different folds.
    Scott KA; Daggett V
    Biochemistry; 2007 Feb; 46(6):1545-56. PubMed ID: 17279619
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Conformational dynamics of the estrogen receptor alpha: molecular dynamics simulations of the influence of binding site structure on protein dynamics.
    Celik L; Lund JD; Schiøtt B
    Biochemistry; 2007 Feb; 46(7):1743-58. PubMed ID: 17249692
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Using protein design to dissect the effect of charged residues on metal binding and protein stability.
    Maniccia AW; Yang W; Li SY; Johnson JA; Yang JJ
    Biochemistry; 2006 May; 45(18):5848-56. PubMed ID: 16669627
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ab initio 3-D structure prediction of an artificially designed three-alpha-helix bundle via all-atom molecular dynamics simulations.
    Breda A; Santos DS; Basso LA; de Souza ON
    Genet Mol Res; 2007 Oct; 6(4):901-10. PubMed ID: 18058711
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics.
    de Hatten X; Cournia Z; Huc I; Smith JC; Metzler-Nolte N
    Chemistry; 2007; 13(29):8139-52. PubMed ID: 17763506
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies.
    Yuzlenko O; Kieć-Kononowicz K
    J Comput Chem; 2009 Jan; 30(1):14-32. PubMed ID: 18496794
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Observation of "ionic lock" formation in molecular dynamics simulations of wild-type beta 1 and beta 2 adrenergic receptors.
    Vanni S; Neri M; Tavernelli I; Rothlisberger U
    Biochemistry; 2009 Jun; 48(22):4789-97. PubMed ID: 19378975
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Water-mediated interactions between DNA and PhoB DNA-binding/transactivation domain: NMR-restrained molecular dynamics in explicit water environment.
    Yamane T; Okamura H; Ikeguchi M; Nishimura Y; Kidera A
    Proteins; 2008 Jun; 71(4):1970-83. PubMed ID: 18186481
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Elucidating the intermolecular interactions within a desolvated protein-ligand complex. An experimental and computational study.
    Kitova EN; Seo M; Roy PN; Klassen JS
    J Am Chem Soc; 2008 Jan; 130(4):1214-26. PubMed ID: 18171060
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reconstruction of protein form with X-ray solution scattering and a genetic algorithm.
    Chacón P; Díaz JF; Morán F; Andreu JM
    J Mol Biol; 2000 Jun; 299(5):1289-302. PubMed ID: 10873453
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ankyrin repeat: a unique motif mediating protein-protein interactions.
    Li J; Mahajan A; Tsai MD
    Biochemistry; 2006 Dec; 45(51):15168-78. PubMed ID: 17176038
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Prediction of titration properties of structures of a protein derived from molecular dynamics trajectories.
    Wlodek ST; Antosiewicz J; McCammon JA
    Protein Sci; 1997 Feb; 6(2):373-82. PubMed ID: 9041639
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Making optimal use of empirical energy functions: force-field parameterization in crystal space.
    Krieger E; Darden T; Nabuurs SB; Finkelstein A; Vriend G
    Proteins; 2004 Dec; 57(4):678-83. PubMed ID: 15390263
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Role of the protein side-chain fluctuations on the strength of pair-wise electrostatic interactions: comparing experimental with computed pK(a)s.
    Alexov E
    Proteins; 2003 Jan; 50(1):94-103. PubMed ID: 12471602
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Using molecular dynamics simulations on crambin to evaluate the suitability of different continuum dielectric and hydrogen atom models for protein simulations.
    Ornstein RL
    J Biomol Struct Dyn; 1990 Apr; 7(5):1019-41. PubMed ID: 2360995
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Lattice models, packing density, and Boltzmann-like distribution of cavities in proteins.
    Rashin AA; Rashin AH
    Proteins; 2005 Feb; 58(3):547-59. PubMed ID: 15624213
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Molecular dynamics study of major urinary protein-pheromone interactions: a structural model for ligand-induced flexibility increase.
    Macek P; Novák P; Krízová H; Zídek L; Sklenár V
    FEBS Lett; 2006 Jan; 580(2):682-4. PubMed ID: 16412435
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structure of a protein G helix variant suggests the importance of helix propensity and helix dipole interactions in protein design.
    Strop P; Marinescu AM; Mayo SL
    Protein Sci; 2000 Jul; 9(7):1391-4. PubMed ID: 10933505
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Protein stability and ligand binding: new paradigms from in-silico experiments.
    Verma CS; Fischer S
    Biophys Chem; 2005 Apr; 115(2-3):295-302. PubMed ID: 15752621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.