These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 16948491)
1. Integration of microfluidics with biomedical infrared spectroscopy for analytical and diagnostic metabolic profiling. Mansfield CD; Man A; Shaw RA IEE Proc Nanobiotechnol; 2006 Aug; 153(4):74-80. PubMed ID: 16948491 [TBL] [Abstract][Full Text] [Related]
2. Toward point-of-care diagnostic metabolic fingerprinting: quantification of plasma creatinine by infrared spectroscopy of microfluidic-preprocessed samples. Shaw RA; Rigatto C; Reslerova M; Ying SL; Man A; Schattka B; Battrell CF; Matthewson J; Mansfield C Analyst; 2009 Jun; 134(6):1224-31. PubMed ID: 19475152 [TBL] [Abstract][Full Text] [Related]
3. Laminar fluid diffusion interface preconditioning of serum and urine for reagent-free infrared clinical analysis and diagnostics. Mansfield CD; Man A; Low-Ying S; Shaw RA Appl Spectrosc; 2005 Jan; 59(1):10-5. PubMed ID: 15720732 [TBL] [Abstract][Full Text] [Related]
4. Metabolic fingerprinting of biofluids by infrared spectroscopy: modeling and optimization of flow rates for laminar fluid diffusion interface sample preconditioning. Schattka B; Alexander M; Ying SL; Man A; Shaw RA Anal Chem; 2011 Jan; 83(2):555-62. PubMed ID: 21182305 [TBL] [Abstract][Full Text] [Related]
5. Merging microfluidics with microarray-based bioassays. Situma C; Hashimoto M; Soper SA Biomol Eng; 2006 Oct; 23(5):213-31. PubMed ID: 16905357 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic chips for protein differential expression profiling. Armenta JM; Dawoud AA; Lazar IM Electrophoresis; 2009 Apr; 30(7):1145-56. PubMed ID: 19288587 [TBL] [Abstract][Full Text] [Related]
7. Hybrid microfluidics: a digital-to-channel interface for in-line sample processing and chemical separations. Abdelgawad M; Watson MW; Wheeler AR Lab Chip; 2009 Apr; 9(8):1046-51. PubMed ID: 19350085 [TBL] [Abstract][Full Text] [Related]
8. Infrared spectroscopic analysis of biomedical specimens using glass substrates. Shaw RA; Eysel HH; Liu KZ; Mantsch HH Anal Biochem; 1998 Jun; 259(2):181-6. PubMed ID: 9618195 [TBL] [Abstract][Full Text] [Related]
9. Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Bhattacharyya A; Klapperich CM Biomed Microdevices; 2007 Apr; 9(2):245-51. PubMed ID: 17165125 [TBL] [Abstract][Full Text] [Related]
10. Microdroplets: a sea of applications? Huebner A; Sharma S; Srisa-Art M; Hollfelder F; Edel JB; Demello AJ Lab Chip; 2008 Aug; 8(8):1244-54. PubMed ID: 18651063 [TBL] [Abstract][Full Text] [Related]
11. Lab-on-a-chip: microfluidics in drug discovery. Dittrich PS; Manz A Nat Rev Drug Discov; 2006 Mar; 5(3):210-8. PubMed ID: 16518374 [TBL] [Abstract][Full Text] [Related]
12. Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples. Panini NV; Messina GA; Salinas E; Fernández H; Raba J Biosens Bioelectron; 2008 Feb; 23(7):1145-51. PubMed ID: 18162392 [TBL] [Abstract][Full Text] [Related]
13. Fully integrated microfluidic separations systems for biochemical analysis. Roman GT; Kennedy RT J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293 [TBL] [Abstract][Full Text] [Related]
14. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]