BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1694878)

  • 1. Different roles for thiol and aspartyl proteases in antigen presentation of ovalbumin.
    Diment S
    J Immunol; 1990 Jul; 145(2):417-22. PubMed ID: 1694878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Destructive proteolysis by cysteine proteases in antigen presentation of ovalbumin.
    Rodriguez GM; Diment S
    Eur J Immunol; 1995 Jul; 25(7):1823-7. PubMed ID: 7621859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cathepsin D in antigen presentation of ovalbumin.
    Rodriguez GM; Diment S
    J Immunol; 1992 Nov; 149(9):2894-8. PubMed ID: 1328388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both cathepsin B and cathepsin D are necessary for processing of ovalbumin as well as for degradation of class II MHC invariant chain.
    Mizuochi T; Yee ST; Kasai M; Kakiuchi T; Muno D; Kominami E
    Immunol Lett; 1994 Dec; 43(3):189-93. PubMed ID: 7721331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity in MHC class II ovalbumin T cell epitopes generated by distinct proteases.
    Vidard L; Rock KL; Benacerraf B
    J Immunol; 1992 Jul; 149(2):498-504. PubMed ID: 1378066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The endo/lysosomal protease cathepsin B is able to process conalbumin fragments for presentation to T cells.
    Gradehandt G; Ruede E
    Immunology; 1991 Nov; 74(3):393-8. PubMed ID: 1769688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The generation of immunogenic peptides can be selectively increased or decreased by proteolytic enzyme inhibitors.
    Vidard L; Rock KL; Benacerraf B
    J Immunol; 1991 Sep; 147(6):1786-91. PubMed ID: 1890304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of antigen-presenting cells that present exogenous antigens in association with class I MHC molecules.
    Rock KL; Rothstein L; Gamble S; Fleischacker C
    J Immunol; 1993 Jan; 150(2):438-46. PubMed ID: 8419476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing without proteolytic cleavage is required for recognition of insulin by T cells.
    Gradehandt G; Hampl J; Milbradt S; RĂ¼de E
    Eur J Immunol; 1990 Dec; 20(12):2637-41. PubMed ID: 2269328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity in antigen processing by different types of antigen-presenting cells. Effect of cell culture on antigen processing ability.
    Vidard L; Rock KL; Benacerraf B
    J Immunol; 1992 Sep; 149(6):1905-11. PubMed ID: 1517561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nature of the ligand recognized by a hapten- and carrier-specific, MHC-restricted T cell receptor.
    Nalefski EA; Rao A
    J Immunol; 1993 May; 150(9):3806-16. PubMed ID: 7682584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of proteases that process distinct epitopes on the same protein.
    Takahashi H; Cease KB; Berzofsky JA
    J Immunol; 1989 Apr; 142(7):2221-9. PubMed ID: 2466893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weak base amines can inhibit class I MHC-restricted antigen presentation.
    Michalek MT; Benacerraf B; Rock KL
    J Immunol; 1991 Jan; 146(2):449-56. PubMed ID: 1987272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time dependence of B cell processing and presentation of peptide and native protein antigens.
    Lakey EK; Casten LA; Niebling WL; Margoliash E; Pierce SK
    J Immunol; 1988 May; 140(10):3309-14. PubMed ID: 2834435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective processing of exogenous antigens by antigen-presenting cells with deleted MHC genes.
    Diment S; Shinde S
    J Immunol; 1995 Jan; 154(2):530-5. PubMed ID: 7814866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Class I-restricted presentation occurs without internalization or processing of exogenous antigenic peptides.
    Hosken NA; Bevan MJ; Carbone FR
    J Immunol; 1989 Feb; 142(4):1079-83. PubMed ID: 2492575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of class I MHC-restricted, peptide-specific cytolytic T lymphocytes by peptide priming in vivo.
    Ishioka GY; Colon S; Miles C; Grey HM; Chesnut RW
    J Immunol; 1989 Aug; 143(4):1094-100. PubMed ID: 2787356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective induction of anti-tumor immune responses with oligomannose-coated liposome targeting to intraperitoneal phagocytic cells.
    Ikehara Y; Shiuchi N; Kabata-Ikehara S; Nakanishi H; Yokoyama N; Takagi H; Nagata T; Koide Y; Kuzushima K; Takahashi T; Tsujimura K; Kojima N
    Cancer Lett; 2008 Feb; 260(1-2):137-45. PubMed ID: 18077084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of antigenic peptides by lymphocyte granule serine proteases (granzymes).
    Carter CR; Sayers TJ; Wiltrout RH; Turcovski-Corrales SM; Taub DD
    Cell Immunol; 1996 Sep; 172(2):235-45. PubMed ID: 8964086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous presentation and cross-presentation of immune-stimulating complex-associated cognate antigen by antigen-specific B cells.
    Robson NC; Donachie AM; Mowat AM
    Eur J Immunol; 2008 May; 38(5):1238-46. PubMed ID: 18398931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.