These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16949106)

  • 1. A practical ranking system to compare toxicity of anti-fouling paints.
    Karlsson J; Breitholtz M; Eklund B
    Mar Pollut Bull; 2006 Dec; 52(12):1661-7. PubMed ID: 16949106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New biocide-free anti-fouling paints are toxic.
    Karlsson J; Eklund B
    Mar Pollut Bull; 2004 Sep; 49(5-6):456-64. PubMed ID: 15325213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater.
    Ytreberg E; Karlsson J; Eklund B
    Sci Total Environ; 2010 May; 408(12):2459-66. PubMed ID: 20347476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels.
    Karlsson J; Ytreberg E; Eklund B
    Environ Pollut; 2010 Mar; 158(3):681-7. PubMed ID: 19913342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy and toxicity of self-polishing biocide-free antifouling paints.
    Löschau M; Krätke R
    Environ Pollut; 2005 Nov; 138(2):260-7. PubMed ID: 15955603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TNT leakage through sediment to water and toxicity to Nitocra spinipes.
    Ek H; Nilsson E; Birgersson G; Dave G
    Ecotoxicol Environ Saf; 2007 Jul; 67(3):341-8. PubMed ID: 17141867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints.
    Hall LW; Giddings JM; Solomon KR; Balcomb R
    Crit Rev Toxicol; 1999 Jul; 29(4):367-437. PubMed ID: 10451264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical risks and consumer products: the toxicity of shoe soles.
    Ingre-Khans E; Rudén C; Breitholtz M
    Ecotoxicol Environ Saf; 2010 Oct; 73(7):1633-40. PubMed ID: 20709395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new simple method with high precision for determining the toxicity of antifouling paints on brine shrimp larvae (Artemia): first results.
    Castritsi-Catharios J; Bourdaniotis N; Persoone G
    Chemosphere; 2007 Apr; 67(6):1127-32. PubMed ID: 17217989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a growth inhibition test with the marine and brackish water red alga Ceramium tenuicorne.
    Eklund B
    Mar Pollut Bull; 2005 Sep; 50(9):921-30. PubMed ID: 16157164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lethal and sublethal toxicity of the antifoulant compound Irgarol 1051 to the mud snail Ilyanassa obsoleta.
    Finnegan MC; Pittman S; DeLorenzo ME
    Arch Environ Contam Toxicol; 2009 Jan; 56(1):85-95. PubMed ID: 18458994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marine organism.
    Katranitsas A; Castritsi-Catharios J; Persoone G
    Mar Pollut Bull; 2003 Nov; 46(11):1491-4. PubMed ID: 14607547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda.
    Sánchez-Bayo F
    Environ Pollut; 2006 Feb; 139(3):385-420. PubMed ID: 16111793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute and chronic toxicities of Irgarol alone and in combination with copper to the marine copepod Tigriopus japonicus.
    Bao VW; Leung KM; Lui GC; Lam MH
    Chemosphere; 2013 Jan; 90(3):1140-8. PubMed ID: 23069205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food quality effects on copepod growth and development: implications for bioassays in ecotoxicological testing.
    Dahl U; Lind CR; Gorokhova E; Eklund B; Breitholtz M
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):351-7. PubMed ID: 18514311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term toxicity tests on the harpacticoid copepod Tisbe battagliai: lethal and reproductive endpoints.
    Diz FR; Araújo CV; Moreno-Garrido I; Hampel M; Blasco J
    Ecotoxicol Environ Saf; 2009 Oct; 72(7):1881-6. PubMed ID: 19362371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of phenanthrene and lindane mixtures to marine invertebrates.
    Evans AD; Nipper M
    Environ Toxicol; 2007 Oct; 22(5):495-501. PubMed ID: 17696137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecotoxicity of paint mixtures: comparison between measured and calculated toxicity.
    Gade AL; Heiaas H; Lillicrap A; Hylland K
    Sci Total Environ; 2012 Oct; 435-436():526-40. PubMed ID: 22892347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of growth-related sublethal endpoints in ecotoxicological assessments using a harpacticoid copepod.
    Dahl U; Gorokhova E; Breitholtz M
    Aquat Toxicol; 2006 May; 77(4):433-8. PubMed ID: 16504314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of salinity and organic matter on the toxicity of Cu to a brackish water and marine clone of the red macroalga Ceramium tenuicorne.
    Ytreberg E; Karlsson J; Ndungu K; Hassellöv M; Breitbarth E; Eklund B
    Ecotoxicol Environ Saf; 2011 May; 74(4):636-42. PubMed ID: 20970191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.