BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 16949339)

  • 1. Dimensional complexity of neuromagnetic activity reduced during finger movement of greater difficulty.
    Wu YZ; Yang TH; Lin YY; Chen SS; Liao KK; Chen LF; Yeh TC; Wu YT; Ho LT; Hsieh JC
    Clin Neurophysiol; 2006 Nov; 117(11):2473-81. PubMed ID: 16949339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of abnormal neuromagnetic signatures in the motor cortex of adolescent migraine.
    Wang X; Xiang J; Wang Y; Pardos M; Meng L; Huo X; Korostenskaja M; Powers SW; Kabbouche MA; Hershey AD
    Headache; 2010 Jun; 50(6):1005-16. PubMed ID: 20487034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of sensori-motor interaction in the primary and secondary somatosensory cortices in humans: a magnetoencephalography study.
    Wasaka T; Kida T; Nakata H; Akatsuka K; Kakigi R
    Neuroscience; 2007 Oct; 149(2):446-56. PubMed ID: 17869442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of primary motor cortex in motor imagery: a neuromagnetic study.
    Schnitzler A; Salenius S; Salmelin R; Jousmäki V; Hari R
    Neuroimage; 1997 Oct; 6(3):201-8. PubMed ID: 9344824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings.
    Jurkiewicz MT; Gaetz WC; Bostan AC; Cheyne D
    Neuroimage; 2006 Sep; 32(3):1281-9. PubMed ID: 16863693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tonic neuronal activation during simple and complex finger movements analyzed by DC-magnetoencephalography.
    Leistner S; Wuebbeler G; Trahms L; Curio G; Mackert BM
    Neurosci Lett; 2006 Feb; 394(1):42-7. PubMed ID: 16249054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement.
    Kida T; Wasaka T; Inui K; Akatsuka K; Nakata H; Kakigi R
    Neuroimage; 2006 Sep; 32(3):1355-64. PubMed ID: 16806987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional relationship between human rolandic oscillations and motor cortical excitability: an MEG study.
    Tamura Y; Hoshiyama M; Nakata H; Hiroe N; Inui K; Kaneoke Y; Inoue K; Kakigi R
    Eur J Neurosci; 2005 May; 21(9):2555-62. PubMed ID: 15932613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of the non-dominant motor cortex during bimanual symmetric finger movement: a functional magnetic resonance imaging study.
    Aramaki Y; Honda M; Sadato N
    Neuroscience; 2006 Sep; 141(4):2147-53. PubMed ID: 16793210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cerebral oscillatory network associated with auditorily paced finger movements.
    Pollok B; Gross J; Müller K; Aschersleben G; Schnitzler A
    Neuroimage; 2005 Feb; 24(3):646-55. PubMed ID: 15652300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue in a simple repetitive motor task: a combined electrophysiological and neuropsychological study.
    Dirnberger G; Duregger C; Trettler E; Lindinger G; Lang W
    Brain Res; 2004 Nov; 1028(1):26-30. PubMed ID: 15518638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilateral cerebral activity for unilateral foot movement revealed by whole-head magnetoencephalography.
    Endo H; Kato Y; Kizuka T; Masuda T; Takeda T
    Somatosens Mot Res; 2004 Mar; 21(1):33-43. PubMed ID: 15203972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-paced movements induce high-frequency gamma oscillations in primary motor cortex.
    Cheyne D; Bells S; Ferrari P; Gaetz W; Bostan AC
    Neuroimage; 2008 Aug; 42(1):332-42. PubMed ID: 18511304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensorimotor integration in focal task-specific hand dystonia: a magnetoencephalographic assessment.
    Tecchio F; Melgari JM; Zappasodi F; Porcaro C; Milazzo D; Cassetta E; Rossini PM
    Neuroscience; 2008 Jun; 154(2):563-71. PubMed ID: 18472344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping.
    Lewis PA; Wing AM; Pope PA; Praamstra P; Miall RC
    Neuropsychologia; 2004; 42(10):1301-12. PubMed ID: 15193939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromagnetic Cerebellar Activity Entrains to the Kinematics of Executed Finger Movements.
    Marty B; Wens V; Bourguignon M; Naeije G; Goldman S; Jousmäki V; De Tiège X
    Cerebellum; 2018 Oct; 17(5):531-539. PubMed ID: 29725948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory-motor interaction in primary hand cortical areas: a magnetoencephalography assessment.
    Tecchio F; Zappasodi F; Melgari JM; Porcaro C; Cassetta E; Rossini PM
    Neuroscience; 2006 Aug; 141(1):533-42. PubMed ID: 16713107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography.
    Gross J; Pollok B; Dirks M; Timmermann L; Butz M; Schnitzler A
    Neuroimage; 2005 May; 26(1):91-8. PubMed ID: 15862209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of single MEG trials related to left and right index finger movements.
    Kauhanen L; Nykopp T; Sams M
    Clin Neurophysiol; 2006 Feb; 117(2):430-9. PubMed ID: 16413826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.