These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16949580)

  • 21. Mutational analysis of the AtNUDT7 Nudix hydrolase from Arabidopsis thaliana reveals residues required for protein quaternary structure formation and activity.
    Olejnik K; Płochocka D; Grynberg M; Goch G; Gruszecki WI; Basińska T; Kraszewska E
    Acta Biochim Pol; 2009; 56(2):291-300. PubMed ID: 19448856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase.
    Mandrich L; Manco G
    Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling the degradation of artificial amide bonds in nylon oligomer hydrolase: from induced-fit to acylation processes.
    Baba T; Boero M; Kamiya K; Ando H; Negoro S; Nakano M; Shigeta Y
    Phys Chem Chem Phys; 2015 Feb; 17(6):4492-504. PubMed ID: 25581392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution.
    Prijambada ID; Negoro S; Yomo T; Urabe I
    Appl Environ Microbiol; 1995 May; 61(5):2020-2. PubMed ID: 7646041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity.
    Fujii R; Nakagawa Y; Hiratake J; Sogabe A; Sakata K
    Protein Eng Des Sel; 2005 Feb; 18(2):93-101. PubMed ID: 15788423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and action of a C-C bond cleaving alpha/beta-hydrolase involved in nicotine degradation.
    Schleberger C; Sachelaru P; Brandsch R; Schulz GE
    J Mol Biol; 2007 Mar; 367(2):409-18. PubMed ID: 17275835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystallization and X-ray diffraction analysis of 6-aminohexanoate-cyclic-dimer hydrolase from Arthrobacter sp. KI72.
    Yasuhira K; Uedo Y; Shibata N; Negoro S; Takeo M; Higuchi Y
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Dec; 62(Pt 12):1209-11. PubMed ID: 17142898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nylon oligomer degradation gene, nylC, on plasmid pOAD2 from a Flavobacterium strain encodes endo-type 6-aminohexanoate oligomer hydrolase: purification and characterization of the nylC gene product.
    Kakudo S; Negoro S; Urabe I; Okada H
    Appl Environ Microbiol; 1993 Nov; 59(11):3978-80. PubMed ID: 8285701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary adaptation of plasmid-encoded enzymes for degrading nylon oligomers.
    Okada H; Negoro S; Kimura H; Nakamura S
    Nature; 1983 Nov 10-16; 306(5939):203-6. PubMed ID: 6646204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic mechanism of inulinase from Arthrobacter sp. S37.
    Kim KY; Nascimento AS; Golubev AM; Polikarpov I; Kim CS; Kang SI; Kim SI
    Biochem Biophys Res Commun; 2008 Jul; 371(4):600-5. PubMed ID: 18395004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel aryl acylamidase from Nocardia farcinica hydrolyses polyamide.
    Heumann S; Eberl A; Fischer-Colbrie G; Pobeheim H; Kaufmann F; Ribitsch D; Cavaco-Paulo A; Guebitz GM
    Biotechnol Bioeng; 2009 Mar; 102(4):1003-11. PubMed ID: 18942140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The SGNH-hydrolase of Streptomyces coelicolor has (aryl)esterase and a true lipase activity.
    Bielen A; Cetković H; Long PF; Schwab H; Abramić M; Vujaklija D
    Biochimie; 2009 Mar; 91(3):390-400. PubMed ID: 19041687
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites.
    Lee LC; Chen YT; Yen CC; Chiang TC; Tang SJ; Lee GC; Shaw JF
    J Agric Food Chem; 2007 Jun; 55(13):5103-8. PubMed ID: 17536826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and functional characterization of nylon hydrolases.
    Negoro S; Kato DI; Ohki T; Yasuhira K; Kawashima Y; Nagai K; Takeo M; Shibata N; Kamiya K; Shigeta Y
    Methods Enzymol; 2021; 648():357-389. PubMed ID: 33579412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic and mutational studies of the number of interacting divalent cations required by bacterial and human methionine aminopeptidases.
    Hu XV; Chen X; Han KC; Mildvan AS; Liu JO
    Biochemistry; 2007 Nov; 46(44):12833-43. PubMed ID: 17929833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and kinetics of phosphonopyruvate hydrolase from Variovorax sp. Pal2: new insight into the divergence of catalysis within the PEP mutase/isocitrate lyase superfamily.
    Chen CC; Han Y; Niu W; Kulakova AN; Howard A; Quinn JP; Dunaway-Mariano D; Herzberg O
    Biochemistry; 2006 Sep; 45(38):11491-504. PubMed ID: 16981709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity.
    Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST
    J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans.
    Hawwa R; Larsen SD; Ratia K; Mesecar AD
    J Mol Biol; 2009 Oct; 393(1):36-57. PubMed ID: 19631223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution.
    Kelly RM; Leemhuis H; Rozeboom HJ; van Oosterwijk N; Dijkstra BW; Dijkhuizen L
    Biochem J; 2008 Aug; 413(3):517-25. PubMed ID: 18422488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.