BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 16949605)

  • 1. Direct visualization of saposin remodelling of lipid bilayers.
    Alattia JR; Shaw JE; Yip CM; Privé GG
    J Mol Biol; 2006 Oct; 362(5):943-53. PubMed ID: 16949605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct AFM observation of saposin C-induced membrane domains in lipid bilayers: from simple to complex lipid mixtures.
    You HX; Qi X; Yu L
    Chem Phys Lipids; 2004 Nov; 132(1):15-22. PubMed ID: 15530444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights into the lipid interaction of an ancient saposin-like protein.
    Michalek M; Leippe M
    Biochemistry; 2015 Mar; 54(9):1778-86. PubMed ID: 25715682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of human saposin C in a detergent environment.
    Hawkins CA; de Alba E; Tjandra N
    J Mol Biol; 2005 Mar; 346(5):1381-92. PubMed ID: 15713488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saposin C-LBPA interaction in late-endosomes/lysosomes.
    Chu Z; Witte DP; Qi X
    Exp Cell Res; 2005 Feb; 303(2):300-7. PubMed ID: 15652344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saposin B mobilizes lipids from cholesterol-poor and bis(monoacylglycero)phosphate-rich membranes at acidic pH. Unglycosylated patient variant saposin B lacks lipid-extraction capacity.
    Remmel N; Locatelli-Hoops S; Breiden B; Schwarzmann G; Sandhoff K
    FEBS J; 2007 Jul; 274(13):3405-20. PubMed ID: 17561962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of human saposins C andD: implications for lipid recognition and membrane interactions.
    Rossmann M; Schultz-Heienbrok R; Behlke J; Remmel N; Alings C; Sandhoff K; Saenger W; Maier T
    Structure; 2008 May; 16(5):809-17. PubMed ID: 18462685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular imaging of membrane interfaces reveals mode of beta-glucosidase activation by saposin C.
    Alattia JR; Shaw JE; Yip CM; Privé GG
    Proc Natl Acad Sci U S A; 2007 Oct; 104(44):17394-9. PubMed ID: 17954913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined saposin C and D deficiencies in mice lead to a neuronopathic phenotype, glucosylceramide and alpha-hydroxy ceramide accumulation, and altered prosaposin trafficking.
    Sun Y; Witte DP; Zamzow M; Ran H; Quinn B; Matsuda J; Grabowski GA
    Hum Mol Genet; 2007 Apr; 16(8):957-71. PubMed ID: 17353235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of human saposins by NMR spectroscopy.
    John M; Wendeler M; Heller M; Sandhoff K; Kessler H
    Biochemistry; 2006 Apr; 45(16):5206-16. PubMed ID: 16618109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of the postulated intramolecular sphingolipid activator protein domain of human acid sphingomyelinase.
    Kölzer M; Ferlinz K; Bartelsen O; Hoops SL; Lang F; Sandhoff K
    Biol Chem; 2004 Dec; 385(12):1193-5. PubMed ID: 15653433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of human saposin C: pH-dependent interaction with phospholipid vesicles.
    de Alba E; Weiler S; Tjandra N
    Biochemistry; 2003 Dec; 42(50):14729-40. PubMed ID: 14674747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation in saposin D domain of sphingolipid activator protein gene causes urinary system defects and cerebellar Purkinje cell degeneration with accumulation of hydroxy fatty acid-containing ceramide in mouse.
    Matsuda J; Kido M; Tadano-Aritomi K; Ishizuka I; Tominaga K; Toida K; Takeda E; Suzuki K; Kuroda Y
    Hum Mol Genet; 2004 Nov; 13(21):2709-23. PubMed ID: 15345707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic generation of ceramide induces membrane restructuring: Correlated AFM and fluorescence imaging of supported bilayers.
    Ira ; Zou S; Ramirez DM; Vanderlip S; Ogilvie W; Jakubek ZJ; Johnston LJ
    J Struct Biol; 2009 Oct; 168(1):78-89. PubMed ID: 19348948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes.
    Tiriveedhi V; Butko P
    Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of lysine residues in membrane anchoring of saposin C.
    Liu A; Wenzel N; Qi X
    Arch Biochem Biophys; 2005 Nov; 443(1-2):101-12. PubMed ID: 16256068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules.
    Yuan W; Qi X; Tsang P; Kang SJ; Illarionov PA; Besra GS; Gumperz J; Cresswell P
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5551-6. PubMed ID: 17372201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The endophilin N-BAR domain perturbs the structure of lipid bilayers.
    Suresh S; Edwardson JM
    Biochemistry; 2010 Jul; 49(27):5766-71. PubMed ID: 20527805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy.
    Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM
    J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the interaction forces between hydrophobic peptides and supported lipid bilayers using AFM.
    Andre G; Brasseur R; Dufrêne YF
    J Mol Recognit; 2007; 20(6):538-45. PubMed ID: 17891753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.