These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
437 related articles for article (PubMed ID: 16949632)
1. Influence of lead acetate on soil microbial biomass and community structure in two different soils with the growth of Chinese cabbage (Brassica chinensis). Liao M; Chen CL; Zeng LS; Huang CY Chemosphere; 2007 Jan; 66(7):1197-205. PubMed ID: 16949632 [TBL] [Abstract][Full Text] [Related]
2. Effects of lead contamination on soil microbial activity and rice physiological indices in soil-Pb-rice (Oryza sativa L.) system. Zeng LS; Liao M; Chen CL; Huang CY Chemosphere; 2006 Oct; 65(4):567-74. PubMed ID: 16581104 [TBL] [Abstract][Full Text] [Related]
3. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Muhammad A; Xu J; Li Z; Wang H; Yao H Chemosphere; 2005 Jul; 60(4):508-14. PubMed ID: 15950043 [TBL] [Abstract][Full Text] [Related]
4. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils. Yao HY; Liu YY; Xue D; Huang CY J Environ Sci (China); 2006; 18(3):503-9. PubMed ID: 17294647 [TBL] [Abstract][Full Text] [Related]
5. Changes in lead availability affect bacterial community structure but not basal respiration in a microcosm study with forest soils. Lazzaro A; Schulin R; Widmer F; Frey B Sci Total Environ; 2006 Dec; 371(1-3):110-24. PubMed ID: 17023024 [TBL] [Abstract][Full Text] [Related]
6. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system. Zeng LS; Liao M; Chen CL; Huang CY Ecotoxicol Environ Saf; 2007 May; 67(1):67-74. PubMed ID: 16806470 [TBL] [Abstract][Full Text] [Related]
7. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231 [TBL] [Abstract][Full Text] [Related]
8. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
9. Microbial indicators of heavy metal contamination in urban and rural soils. Yang Y; Campbell CD; Clark L; Cameron CM; Paterson E Chemosphere; 2006 Jun; 63(11):1942-52. PubMed ID: 16310826 [TBL] [Abstract][Full Text] [Related]
10. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments. Khan KS; Joergensen RG Chemosphere; 2006 Nov; 65(6):981-7. PubMed ID: 16677685 [TBL] [Abstract][Full Text] [Related]
11. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230 [TBL] [Abstract][Full Text] [Related]
12. Impact of imazethapyr on the microbial community structure in agricultural soils. Zhang C; Xu J; Liu X; Dong F; Kong Z; Sheng Y; Zheng Y Chemosphere; 2010 Oct; 81(6):800-6. PubMed ID: 20659755 [TBL] [Abstract][Full Text] [Related]
13. Monitoring microbial biomass and respiration in different soils from the Czech Republic--a summary of results. Hofman J; Dusek L; Klánová J; Bezchlebová J; Holoubek I Environ Int; 2004 Mar; 30(1):19-30. PubMed ID: 14664861 [TBL] [Abstract][Full Text] [Related]
14. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Liao M; Xie XM Ecotoxicol Environ Saf; 2007 Feb; 66(2):217-23. PubMed ID: 16488009 [TBL] [Abstract][Full Text] [Related]
15. Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. Huang DL; Zeng GM; Jiang XY; Feng CL; Yu HY; Huang GH; Liu HL J Hazard Mater; 2006 Jun; 134(1-3):268-76. PubMed ID: 16343764 [TBL] [Abstract][Full Text] [Related]
16. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area. Liao M; Chen CL; Huang CY J Environ Sci (China); 2005; 17(5):832-7. PubMed ID: 16313013 [TBL] [Abstract][Full Text] [Related]
17. Comparison of different microbial biomass and activity measurement methods in metal-contaminated soils. Barajas-Aceves M Bioresour Technol; 2005 Aug; 96(12):1405-14. PubMed ID: 15792589 [TBL] [Abstract][Full Text] [Related]
18. Alteration and resilience of the soil microbial community following compost amendment: effects of compost level and compost-borne microbial community. Saison C; Degrange V; Oliver R; Millard P; Commeaux C; Montange D; Le Roux X Environ Microbiol; 2006 Feb; 8(2):247-57. PubMed ID: 16423013 [TBL] [Abstract][Full Text] [Related]
19. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Sheng XF; Xia JJ; Jiang CY; He LY; Qian M Environ Pollut; 2008 Dec; 156(3):1164-70. PubMed ID: 18490091 [TBL] [Abstract][Full Text] [Related]
20. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils. Stefanowicz AM; Kapusta P; Szarek-Łukaszewska G; Grodzińska K; Niklińska M; Vogt RD Sci Total Environ; 2012 Nov; 439():211-9. PubMed ID: 23073370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]