These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 16949754)

  • 41. QD as a bifunctional cell-surface marker for both fluorescence and atomic force microscopy.
    Wang Y; Chen Y; Cai J; Zhong L
    Ultramicroscopy; 2009 Feb; 109(3):268-74. PubMed ID: 19162401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct visualization of the enzymatic digestion of a single fiber of native cellulose in an aqueous environment by atomic force microscopy.
    Quirk A; Lipkowski J; Vandenende C; Cockburn D; Clarke AJ; Dutcher JR; Roscoe SG
    Langmuir; 2010 Apr; 26(7):5007-13. PubMed ID: 20170174
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy.
    Miyagi A; Tsunaka Y; Uchihashi T; Mayanagi K; Hirose S; Morikawa K; Ando T
    Chemphyschem; 2008 Sep; 9(13):1859-66. PubMed ID: 18698566
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Site-specific binding of the 9.5 kilodalton DNA-binding protein ORF80 visualized by atomic force microscopy.
    Lysetska M; Zettl H; Oka I; Lipps G; Krauss G; Krausch G
    Biomacromolecules; 2005; 6(3):1252-7. PubMed ID: 15877339
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein-DNA interactions in high speed AFM: single molecule diffusion analysis of human RAD54.
    Sanchez H; Suzuki Y; Yokokawa M; Takeyasu K; Wyman C
    Integr Biol (Camb); 2011 Nov; 3(11):1127-34. PubMed ID: 21986699
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of non-covalent bioconjugation of colloidal nanoparticles by means of atomic force microscopy and data clustering.
    Irrgang J; Ksienczyk J; Lapiene V; Niemeyer CM
    Chemphyschem; 2009 Jul; 10(9-10):1483-91. PubMed ID: 19322805
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A high-speed atomic force microscope for studying biological macromolecules in action.
    Ando T; Kodera N; Naito Y; Kinoshita T; Furuta K; Toyoshima YY
    Chemphyschem; 2003 Nov; 4(11):1196-202. PubMed ID: 14652998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DNA-templated self-assembly of protein arrays and highly conductive nanowires.
    Yan H; Park SH; Finkelstein G; Reif JH; LaBean TH
    Science; 2003 Sep; 301(5641):1882-4. PubMed ID: 14512621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. WGA-QD probe-based AFM detects WGA-binding sites on cell surface and WGA-induced rigidity alternation.
    Wang X; He D; Cai J; Chen T; Zou F; Li Y; Wu Y; Chen ZW; Chen Y
    Biochem Biophys Res Commun; 2009 Feb; 379(2):335-40. PubMed ID: 19103166
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Atomic force microscopy imaging and pulling of nucleic acids.
    Hansma HG; Kasuya K; Oroudjev E
    Curr Opin Struct Biol; 2004 Jun; 14(3):380-5. PubMed ID: 15193320
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-speed atomic force microscopy and biomolecular processes.
    Uchihashi T; Ando T
    Methods Mol Biol; 2011; 736():285-300. PubMed ID: 21660734
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Study of microorganism genome DNA by atomic force microscopy].
    Lymans'kyĭ OP; Lymans'ka OIu
    Tsitol Genet; 2002; 36(4):30-6. PubMed ID: 12379015
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNA-protein noncovalent cross-linking: ruthenium dipyridophenazine biotin complex for the assembly of proteins and gold nanoparticles on DNA templates.
    Slim M; Durisic N; Grutter P; Sleiman HF
    Chembiochem; 2007 May; 8(7):804-12. PubMed ID: 17407126
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microscopy for recognition of individual biomolecules.
    Schmidt T; Hinterdorfer P; Schindler H
    Microsc Res Tech; 1999 Mar; 44(5):339-46. PubMed ID: 10090208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple topological labeling for imaging single plasmids.
    Escudé C; Roulon T; Lyonnais S; Le Cam E
    Anal Biochem; 2007 Mar; 362(1):55-62. PubMed ID: 17250797
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural dynamics of single molecules studied with high-speed atomic force microscopy.
    Henderson RM
    Expert Opin Drug Discov; 2015 Mar; 10(3):221-9. PubMed ID: 25549544
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Force-clamp spectroscopy with a small dithering of AFM tip, and its application to explore the energy landscape of single avidin-biotin complex.
    Favre M; Chtcheglova LA; Lapshin DA; Sekatskii SK; Valle F; Dietler G
    Ultramicroscopy; 2007 Oct; 107(10-11):882-6. PubMed ID: 17560032
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA substrate preparation for atomic force microscopy studies of protein-DNA interactions.
    Buechner CN; Tessmer I
    J Mol Recognit; 2013 Dec; 26(12):605-17. PubMed ID: 24277605
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Atomic force microscopy imaging of DNA under macromolecular crowding conditions.
    Pastré D; Hamon L; Mechulam A; Sorel I; Baconnais S; Curmi PA; Le Cam E; Piétrement O
    Biomacromolecules; 2007 Dec; 8(12):3712-7. PubMed ID: 18020393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.