BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16949777)

  • 21. Development of udenafil-loaded microemulsions for intranasal delivery: in vitro and in vivo evaluations.
    Cho HJ; Ku WS; Termsarasab U; Yoon I; Chung CW; Moon HT; Kim DD
    Int J Pharm; 2012 Feb; 423(2):153-60. PubMed ID: 22209996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oil-in-water microemulsions stabilized by 3-(N,N- dimethylalkylammonio)propanesulfonate surfactants of varying alkyl chain length: Solubilisation of testos-terone propionate.
    Hsieh CM; Warisnoicharoen W; Patel RK; Kianfar F; Lawrence MJ
    Int J Pharm; 2017 Jun; 525(1):1-4. PubMed ID: 28363857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of isopropyl myristate microemulsion systems containing cyclodextrins to improve the solubility of 2 model hydrophobic drugs.
    Nandi I; Bari M; Joshi H
    AAPS PharmSciTech; 2003; 4(1):E10. PubMed ID: 12916919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and characterization of self-microemulsifying drug delivery system of tacrolimus for intravenous administration.
    Borhade VB; Nair HA; Hegde DD
    Drug Dev Ind Pharm; 2009 May; 35(5):619-30. PubMed ID: 18979309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Food grade microemulsion systems: Sunflower oil/castor oil derivative-ethanol/water. Rheological and physicochemical analysis.
    Mori Cortés N; Lorenzo G; Califano AN
    Food Res Int; 2018 May; 107():41-47. PubMed ID: 29580502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liquid spray formulations of xibornol by using self-microemulsifying drug delivery systems.
    Cirri M; Mura P; Mora PC
    Int J Pharm; 2007 Aug; 340(1-2):84-91. PubMed ID: 17531411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel, simple method to simulate gelling process of injectable biodegradable in situ forming drug delivery system based on determination of electrical conductivity.
    Wang K; Jia Q; Yuan J; Li S
    Int J Pharm; 2011 Feb; 404(1-2):176-9. PubMed ID: 21040764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and development of nevirapine loaded surfactant free chitosan microemulsion.
    Bajaj H; Bisht S; Yadav M; Singh V; Singh M
    Acta Pol Pharm; 2011; 68(6):981-8. PubMed ID: 22125965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cremophor-free intravenous microemulsions for paclitaxel I: formulation, cytotoxicity and hemolysis.
    Nornoo AO; Osborne DW; Chow DS
    Int J Pharm; 2008 Feb; 349(1-2):108-16. PubMed ID: 17869459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of cosurfactant addition on phase behavior and microstructure of a water dilutable microemulsion.
    Golwala P; Rathod S; Patil R; Joshi A; Ray D; Aswal VK; Bahadur P; Tiwari S
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110736. PubMed ID: 31865121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mixed lipid phase SMEDDS as an innovative approach to enhance resveratrol solubility.
    Bolko K; Zvonar A; Gašperlin M
    Drug Dev Ind Pharm; 2014 Jan; 40(1):102-9. PubMed ID: 23301796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo.
    Sintov AC; Shapiro L
    J Control Release; 2004 Mar; 95(2):173-83. PubMed ID: 14980766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of nano-emulsion formation by dilution of microemulsions.
    Solè I; Solans C; Maestro A; González C; Gutiérrez JM
    J Colloid Interface Sci; 2012 Jun; 376(1):133-9. PubMed ID: 22480397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solubility improvement of drugs using N-methyl pyrrolidone.
    Sanghvi R; Narazaki R; Machatha SG; Yalkowsky SH
    AAPS PharmSciTech; 2008; 9(2):366-76. PubMed ID: 18431671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cremophor RH40-PEG 400 microemulsions as transdermal drug delivery carrier for ketoprofen.
    Ngawhirunpat T; Worachun N; Opanasopit P; Rojanarata T; Panomsuk S
    Pharm Dev Technol; 2013; 18(4):798-803. PubMed ID: 22023398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: in vitro and in vivo results.
    Gan L; Gan Y; Zhu C; Zhang X; Zhu J
    Int J Pharm; 2009 Jan; 365(1-2):143-9. PubMed ID: 18773948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasonication-assisted preparation and characterization of emulsions and emulsion gels for topical drug delivery.
    Singh VK; Behera B; Pramanik K; Pal K
    J Pharm Sci; 2015 Mar; 104(3):1035-44. PubMed ID: 25470664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and pharmacokinetics evaluation of oral self-emulsifying system for poorly water-soluble drug Lornoxicam.
    Li F; Song S; Guo Y; Zhao Q; Zhang X; Pan W; Yang X
    Drug Deliv; 2015; 22(4):487-98. PubMed ID: 24524289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solubility enhancement of hydrophobic compounds by cosolvents: role of solute hydrophobicity on the solubilization effect.
    Miyako Y; Khalef N; Matsuzaki K; Pinal R
    Int J Pharm; 2010 Jun; 393(1-2):48-54. PubMed ID: 20363302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.