BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16949777)

  • 41. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions.
    Malcolmson C; Satra C; Kantaria S; Sidhu A; Lawrence MJ
    J Pharm Sci; 1998 Jan; 87(1):109-16. PubMed ID: 9452978
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Studies on the kinetics of killing and the proposed mechanism of action of microemulsions against fungi.
    Al-Adham IS; Ashour H; Al-Kaissi E; Khalil E; Kierans M; Collier PJ
    Int J Pharm; 2013 Sep; 454(1):226-32. PubMed ID: 23830945
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design of fenofibrate microemulsion for improved bioavailability.
    Hu L; Wu H; Niu F; Yan C; Yang X; Jia Y
    Int J Pharm; 2011 Nov; 420(2):251-5. PubMed ID: 21907776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formulation design of microemulsion for dermal delivery of penciclovir.
    Zhu W; Yu A; Wang W; Dong R; Wu J; Zhai G
    Int J Pharm; 2008 Aug; 360(1-2):184-90. PubMed ID: 18541394
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physicochemical characterization and evaluation of a microemulsion system for antimicrobial activity of glycerol monolaurate.
    Fu X; Feng F; Huang B
    Int J Pharm; 2006 Sep; 321(1-2):171-5. PubMed ID: 16797893
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of water-in-oil microemulsion for oral delivery of earthworm fibrinolytic enzyme.
    Cheng MB; Wang JC; Li YH; Liu XY; Zhang X; Chen DW; Zhou SF; Zhang Q
    J Control Release; 2008 Jul; 129(1):41-8. PubMed ID: 18474405
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of non-ionic surfactants and plant oils on the solubilization of organochlorine pesticides by oil-in-water microemulsions.
    Zheng G; Zhao Z; Wong JW
    Environ Technol; 2011; 32(3-4):269-79. PubMed ID: 21780695
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toxicity Study of a Self-nanoemulsifying Drug Delivery System Containing N-methyl pyrrolidone.
    Agrawal AG; Kumar A; Gide PS
    Drug Res (Stuttg); 2015 Aug; 65(8):446-8. PubMed ID: 25823509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals.
    Chu J; Cheng YL; Rao AV; Nouraei M; Zarate-Muñoz S; Acosta EJ
    Int J Pharm; 2014 Aug; 471(1-2):92-102. PubMed ID: 24810240
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Studies on effect of microemulsion in enhancing solubility of baicalin and puerarin].
    Yang H; Yi H; Li ML; Cao ZY; Feng WH
    Zhongguo Zhong Yao Za Zhi; 2007 Oct; 32(19):1996-9. PubMed ID: 18161289
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation and in vitro characterization of self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate.
    Taha EI; Al-Saidan S; Samy AM; Khan MA
    Int J Pharm; 2004 Nov; 285(1-2):109-19. PubMed ID: 15488684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization and antimicrobial activity of a pharmaceutical microemulsion.
    Zhang H; Cui Y; Zhu S; Feng F; Zheng X
    Int J Pharm; 2010 Aug; 395(1-2):154-60. PubMed ID: 20580790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physical characterizations of microemulsion systems using tocopheryl polyethylene glycol 1000 succinate (TPGS) as a surfactant for the oral delivery of protein drugs.
    Ke WT; Lin SY; Ho HO; Sheu MT
    J Control Release; 2005 Feb; 102(2):489-507. PubMed ID: 15653166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B.
    Pestana KC; Formariz TP; Franzini CM; Sarmento VH; Chiavacci LA; Scarpa MV; Egito ES; Oliveira AG
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):253-9. PubMed ID: 18676122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Probing the microstructure of nonionic microemulsions with ethyl oleate by viscosity, ROESY, DLS, SANS, and cyclic voltammetry.
    Kaur G; Chiappisi L; Prévost S; Schweins R; Gradzielski M; Mehta SK
    Langmuir; 2012 Jul; 28(29):10640-52. PubMed ID: 22720716
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A pharma-robust design method to investigate the effect of PEG and PEO on matrix tablets.
    Park JS; Shim JY; Nguyen KV; Park JS; Shin S; Choi YW; Lee J; Yoon JH; Jeong SH
    Int J Pharm; 2010 Jun; 393(1-2):79-87. PubMed ID: 20399261
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Distribution behavior of lipophilic drugs in the oil-in-water microemulsions].
    Yao J; Gu XT; Zhou JP; Ping QN; Lu Y
    Yao Xue Xue Bao; 2007 Jul; 42(7):768-73. PubMed ID: 17882963
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mixture experiment methods in the development and optimization of microemulsion formulations.
    Furlanetto S; Cirri M; Piepel G; Mennini N; Mura P
    J Pharm Biomed Anal; 2011 Jun; 55(4):610-7. PubMed ID: 21295935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation and the influencing factors of cetirizine hydrochloride microemulsion.
    Sun Y; Jiang Y; An K
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Jun; 39(3):174-6. PubMed ID: 20946090
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Release of nortriptyline hydrochloride from oil-water microemulsions.
    Moreno M; Frutos P; Ballesteros MP; Lastres JL; Castro D
    Chem Pharm Bull (Tokyo); 2000 Nov; 48(11):1623-7. PubMed ID: 11086887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.