BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16949845)

  • 21. A simple one-dimensional solid-state NMR method to characterize the nuclear spin interaction tensors associated with the peptide bond.
    Lee DK; Ramamoorthy A
    J Magn Reson; 1998 Jul; 133(1):204-6. PubMed ID: 9654488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interference between cross-correlated relaxation and the measurement of scalar and dipolar couplings by Quantitative J.
    de Alba E; Tjandra N
    J Biomol NMR; 2006 May; 35(1):1-16. PubMed ID: 16791736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant.
    Lundström P; Akke M
    J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Off-resonance rotating-frame amide proton spin relaxation experiments measuring microsecond chemical exchange in proteins.
    Lundström P; Akke M
    J Biomol NMR; 2005 Jun; 32(2):163-73. PubMed ID: 16034667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 1H-15N correlation spectroscopy of nanocrystalline proteins.
    Morcombe CR; Paulson EK; Gaponenko V; Byrd RA; Zilm KW
    J Biomol NMR; 2005 Mar; 31(3):217-30. PubMed ID: 15803395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of 15N chemical shift tensors via 15N-13C REDOR and 1N-1H dipolar-shift CPMAS NMR spectroscopy.
    Heise B; Leppert J; Ramachandran R
    Solid State Nucl Magn Reson; 2000 Jun; 16(3):177-87. PubMed ID: 10868570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determining 15N to 14N ratios in biofluids by single-pulse 1H nuclear magnetic resonance.
    Preece NE; Cerdan S
    Anal Biochem; 1993 Dec; 215(2):180-3. PubMed ID: 8122776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppression of diagonal peaks in TROSY-type 1H NMR NOESY spectra of 15N-labeled proteins.
    Meissner A; Sørensen OW
    J Magn Reson; 1999 Oct; 140(2):499-503. PubMed ID: 10497058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy.
    Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP
    J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of amide 15N-1H one-bond couplings in proteins using accordion heteronuclear-shift-correlation experiments.
    Tolman JR; Prestegard JH
    J Magn Reson B; 1996 Sep; 112(3):269-74. PubMed ID: 8921606
    [No Abstract]   [Full Text] [Related]  

  • 31. A triple-resonance pulse scheme for selectively correlating amide 1HN and 15N nuclei with the 1H alpha proton of the preceding residue.
    Clubb RT; Wagner G
    J Biomol NMR; 1992 Jul; 2(4):389-94. PubMed ID: 1324757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved accuracy of 15N-1H scalar and residual dipolar couplings from gradient-enhanced IPAP-HSQC experiments on protonated proteins.
    Yao L; Ying J; Bax A
    J Biomol NMR; 2009 Mar; 43(3):161-70. PubMed ID: 19205898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-field 1H MAS and 15N CP-MAS NMR studies of alanine tripeptides and oligomers: distinction of antiparallel and parallel beta-sheet structures and two crystallographically independent molecules.
    Suzuki Y; Okonogi M; Yamauchi K; Kurosu H; Tansho M; Shimizu T; Saitô H; Asakura T
    J Phys Chem B; 2007 Aug; 111(30):9172-8. PubMed ID: 17625826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid measurement of scalar three-bond 1HN-1H alpha spin coupling constants in 15N-labelled proteins.
    Ponstingl H; Otting G
    J Biomol NMR; 1998 Aug; 12(2):319-24. PubMed ID: 9752002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein expression, selective isotopic labeling, and analysis of hyperfine-shifted NMR signals of Anabaena 7120 vegetative [2Fe-2S]ferredoxin.
    Cheng H; Westler WM; Xia B; Oh BH; Markley JL
    Arch Biochem Biophys; 1995 Jan; 316(1):619-34. PubMed ID: 7840674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurements of carbon to amide-proton distances by C-H dipolar recoupling with 15N NMR detection.
    Schmidt-Rohr K; Hong M
    J Am Chem Soc; 2003 May; 125(19):5648-9. PubMed ID: 12733900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 15N and 1H NMR study of histidine containing protein (HPr) from Staphylococcus carnosus at high pressure.
    Kalbitzer HR; Görler A; Li H; Dubovskii PV; Hengstenberg W; Kowolik C; Yamada H; Akasaka K
    Protein Sci; 2000 Apr; 9(4):693-703. PubMed ID: 10794411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective, in vivo observation of [5-15N]glutamine amide protons in rat brain by 1H-15N heteronuclear multiple-quantum-coherence transfer NMR.
    Kanamori K; Ross BD; Tropp J
    J Magn Reson B; 1995 May; 107(2):107-15. PubMed ID: 7599946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comprehensive analysis of multifield 15N relaxation parameters in proteins: determination of 15N chemical shift anisotropies.
    Canet D; Barthe P; Mutzenhardt P; Roumestand C
    J Am Chem Soc; 2001 May; 123(19):4567-76. PubMed ID: 11457243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous determination of one- and two-bond scalar and residual dipolar couplings between 13C', 13Calpha and 15N spins in proteins.
    Puttonen E; Tossavainen H; Permi P
    Magn Reson Chem; 2006 Jul; 44 Spec No():S168-76. PubMed ID: 16823899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.