BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16949859)

  • 21. Lead induces oxidative stress and phenotypic markers of apoptosis in Saccharomyces cerevisiae.
    Bussche JV; Soares EV
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):679-87. PubMed ID: 21191789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficacy of antioxidants in the yeast Saccharomyces cerevisiae correlates with their effects on protein thiols.
    Bednarska S; Leroy P; Zagulski M; Bartosz G
    Biochimie; 2008 Oct; 90(10):1476-85. PubMed ID: 18555025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactive oxygen species generators affect quality parameters and apoptosis markers differently in red deer spermatozoa.
    Martínez-Pastor F; Aisen E; Fernández-Santos MR; Esteso MC; Maroto-Morales A; García-Alvarez O; Garde JJ
    Reproduction; 2009 Feb; 137(2):225-35. PubMed ID: 19028926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein expression profiles in Saccharomyces cerevisiae during apoptosis induced by H2O2.
    Magherini F; Tani C; Gamberi T; Caselli A; Bianchi L; Bini L; Modesti A
    Proteomics; 2007 May; 7(9):1434-45. PubMed ID: 17469077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paraquat induces apoptosis in human lymphocytes: protective and rescue effects of glucose, cannabinoids and insulin-like growth factor-1.
    Rio MJ; Velez-Pardo C
    Growth Factors; 2008 Feb; 26(1):49-60. PubMed ID: 18365879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cadmium induces a heterogeneous and caspase-dependent apoptotic response in Saccharomyces cerevisiae.
    Nargund AM; Avery SV; Houghton JE
    Apoptosis; 2008 Jun; 13(6):811-21. PubMed ID: 18463984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions.
    Blinova K; Carroll S; Bose S; Smirnov AV; Harvey JJ; Knutson JR; Balaban RS
    Biochemistry; 2005 Feb; 44(7):2585-94. PubMed ID: 15709771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death].
    Czarna M; Jarmuszkiewicz W
    Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cadmium induced mitochondrial injury and apoptosis in vero cells: protective effect of diallyl tetrasufide from garlic.
    Murugavel P; Pari L; Sitasawad SL; Kumar S; Kumar S
    Int J Biochem Cell Biol; 2007; 39(1):161-70. PubMed ID: 16971165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antioxidative and oxidative changes in the digestive gland cells of freshwater mussels Unio tumidus caused by selected phenolic compounds in the presence of H(2)O(2) or Cu(2+) ions.
    Labieniec M; Gabryelak T
    Toxicol In Vitro; 2007 Feb; 21(1):146-56. PubMed ID: 17084585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The differential effects of superoxide anion, hydrogen peroxide and hydroxyl radical on cardiac mitochondrial oxidative phosphorylation.
    Zini R; Berdeaux A; Morin D
    Free Radic Res; 2007 Oct; 41(10):1159-66. PubMed ID: 17886038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen peroxide induces apoptosis of BJAB cells due to formation of hydroxyl radicals via intracellular iron-mediated Fenton chemistry in glucose oxidase-mediated oxidative stress.
    Lee JC; Son YO; Choi KC; Jang YS
    Mol Cells; 2006 Aug; 22(1):21-9. PubMed ID: 16951546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnosis of cell death induced by methylglyoxal, a metabolite derived from glycolysis, in Saccharomyces cerevisiae.
    Maeta K; Mori K; Takatsume Y; Izawa S; Inoue Y
    FEMS Microbiol Lett; 2005 Feb; 243(1):87-92. PubMed ID: 15668005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative stress sensitivity in Debaryomyces hansenii.
    Navarrete C; Siles A; Martínez JL; Calero F; Ramos J
    FEMS Yeast Res; 2009 Jun; 9(4):582-90. PubMed ID: 19302096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death.
    Queval G; Issakidis-Bourguet E; Hoeberichts FA; Vandorpe M; Gakière B; Vanacker H; Miginiac-Maslow M; Van Breusegem F; Noctor G
    Plant J; 2007 Nov; 52(4):640-57. PubMed ID: 17877712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Petite mutation in aged and oxidatively stressed ale and lager brewing yeast.
    Gibson BR; Prescott KA; Smart KA
    Lett Appl Microbiol; 2008 Jun; 46(6):636-42. PubMed ID: 18422942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells.
    Heiskanen A; Spégel C; Kostesha N; Lindahl S; Ruzgas T; Emnéus J
    Anal Biochem; 2009 Jan; 384(1):11-9. PubMed ID: 18812160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes.
    Lushchak VI
    Acta Biochim Pol; 2006; 53(4):679-84. PubMed ID: 17063208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid oxidation and autophagy in yeast.
    Kissová I; Deffieu M; Samokhvalov V; Velours G; Bessoule JJ; Manon S; Camougrand N
    Free Radic Biol Med; 2006 Dec; 41(11):1655-61. PubMed ID: 17145553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.