These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16949868)

  • 1. Reproducibility of a 6-s maximal cycling sprint test.
    Mendez-Villanueva A; Bishop D; Hamer P
    J Sci Med Sport; 2007 Oct; 10(5):323-6. PubMed ID: 16949868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of a 5 x 6-s maximal cycling repeated-sprint test in trained female team-sport athletes.
    McGawley K; Bishop D
    Eur J Appl Physiol; 2006 Nov; 98(4):383-93. PubMed ID: 16955291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of power output during eccentric sprint cycling.
    Brughelli M; Van Leemputte M
    J Strength Cond Res; 2013 Jan; 27(1):76-82. PubMed ID: 22344057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK
    J Sports Sci; 1994 Aug; 12(4):363-70. PubMed ID: 7932946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak power output provides the most reliable measure of performance in prolonged intermittent-sprint cycling.
    Hayes M; Smith D; Castle PC; Watt PW; Ross EZ; Maxwell NS
    J Sports Sci; 2013; 31(5):565-72. PubMed ID: 23176342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of age and mode of exercise on power output profiles during repeated sprints.
    Ratel S; Williams CA; Oliver J; Armstrong N
    Eur J Appl Physiol; 2004 Jun; 92(1-2):204-10. PubMed ID: 15045504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test.
    Coso JD; Mora-Rodríguez R
    Appl Physiol Nutr Metab; 2006 Jun; 31(3):186-9. PubMed ID: 16770343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity and Reliability of the Garmin Vector Power Meter in Laboratory and Field Cycling.
    Nimmerichter A; Schnitzer L; Prinz B; Simon D; Wirth K
    Int J Sports Med; 2017 Jun; 38(6):439-446. PubMed ID: 28460405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability and validity of a new variable-power performance test in road cyclists.
    Sharma AP; Elliott AD; Bentley DJ
    Int J Sports Physiol Perform; 2015 Apr; 10(3):278-84. PubMed ID: 25117436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of physiological attributes and their association with stochastic cycling performance.
    Levin GT; Laursen PB; Abbiss CR
    Int J Sports Physiol Perform; 2014 Mar; 9(2):309-15. PubMed ID: 23881270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative methods of normalising EMG during cycling.
    Albertus-Kajee Y; Tucker R; Derman W; Lambert M
    J Electromyogr Kinesiol; 2010 Dec; 20(6):1036-43. PubMed ID: 20696597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of oral creatine supplementation on multiple sprint cycle performance.
    Barnett C; Hinds M; Jenkins DG
    Aust J Sci Med Sport; 1996 Mar; 28(1):35-9. PubMed ID: 8742865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of sprint test indices in well-trained cyclists.
    Coleman DA; Wiles JD; Nunn M; Smith MF
    Int J Sports Med; 2005 Jun; 26(5):383-7. PubMed ID: 15895322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age difference in efficiency of locomotion and maximal power output in well-trained triathletes.
    Brisswalter J; Wu SS; Sultana F; Bernard T; Abbiss CR
    Eur J Appl Physiol; 2014 Dec; 114(12):2579-86. PubMed ID: 25118840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of power output during dynamic cycling.
    Abbiss CR; Levin G; McGuigan MR; Laursen PB
    Int J Sports Med; 2008 Jul; 29(7):574-8. PubMed ID: 18050055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity and Reliability of the PowerCal Device for Estimating Power Output During Cycling Time Trials.
    Costa VP; Guglielmo LG; Paton CD
    J Strength Cond Res; 2017 Jan; 31(1):227-232. PubMed ID: 27135471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of all-out and fast start on 5-min cycling time trial performance.
    Aisbett B; Lerossignol P; McConell GK; Abbiss CR; Snow R
    Med Sci Sports Exerc; 2009 Oct; 41(10):1965-71. PubMed ID: 19727014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory 20-km cycle time trial reproducibility.
    Zavorsky GS; Murias JM; Gow J; Kim DJ; Poulin-Harnois C; Kubow S; Lands LC
    Int J Sports Med; 2007 Sep; 28(9):743-8. PubMed ID: 17455116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducibility of peak power output during a 10-s cycling maximal effort using different sampling rates.
    Duarte JP; Coelho-E-Silva MJ; Severino V; Martinho D; Luz L; Pereira JR; Baptista R; Valente-Dos-Santos J; Machado-Rodrigues AM; Vaz V; Cupido-Dos-Santos A; Martín-Hernández J; Cumming SP; Malina RM
    Acta Physiol Hung; 2014 Dec; 101(4):496-504. PubMed ID: 25201712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions.
    Kay D; Marino FE; Cannon J; St Clair Gibson A; Lambert MI; Noakes TD
    Eur J Appl Physiol; 2001; 84(1-2):115-21. PubMed ID: 11394239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.