These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16950605)

  • 1. The strength of bilayered tablets.
    Podczeck F; Drake KR; Newton JM; Haririan I
    Eur J Pharm Sci; 2006 Dec; 29(5):361-6. PubMed ID: 16950605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The tensile strength of bilayered tablets made from different grades of microcrystalline cellulose.
    Podczeck F; Al-Muti E
    Eur J Pharm Sci; 2010 Nov; 41(3-4):483-8. PubMed ID: 20696243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the specific surface area of tablets composed of pharmaceutical materials with various deformation behaviors.
    Busignies V; Leclerc B; Truchon S; Tchoreloff P
    Drug Dev Ind Pharm; 2011 Feb; 37(2):225-33. PubMed ID: 20653462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple predictive model for the tensile strength of binary tablets.
    Wu CY; Best SM; Bentham AC; Hancock BC; Bonfield W
    Eur J Pharm Sci; 2005 Jun; 25(2-3):331-6. PubMed ID: 15911230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of percolation model to the tensile strength and the reduced modulus of elasticity of three compacted pharmaceutical excipients.
    Busignies V; Leclerc B; Porion P; Evesque P; Couarraze G; Tchoreloff P
    Eur J Pharm Biopharm; 2007 Sep; 67(2):507-14. PubMed ID: 17383863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound transmission measurements for tensile strength evaluation of tablets.
    Simonaho SP; Takala TA; Kuosmanen M; Ketolainen J
    Int J Pharm; 2011 May; 409(1-2):104-10. PubMed ID: 21356298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting tablet tensile strength with a model derived from the gravitation-based high-velocity compaction analysis data.
    Tanner T; Antikainen O; Pollet A; Räikkönen H; Ehlers H; Juppo A; Yliruusi J
    Int J Pharm; 2019 Jul; 566():194-202. PubMed ID: 31100384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the elasticity of pharmaceutical materials on the interfacial mechanical strength of bilayer tablets.
    Busignies V; Mazel V; Diarra H; Tchoreloff P
    Int J Pharm; 2013 Nov; 457(1):260-7. PubMed ID: 24055440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method.
    Diarra H; Mazel V; Busignies V; Tchoreloff P
    Int J Pharm; 2015 Sep; 493(1-2):121-8. PubMed ID: 26200746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression.
    Farber L; Hapgood KP; Michaels JN; Fu XY; Meyer R; Johnson MA; Li F
    Int J Pharm; 2008 Jan; 346(1-2):17-24. PubMed ID: 17689211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of fragmentation during compression of pellets prepared from a 4 to 1 mixture of dicalcium phosphate dihydrate and microcrystalline cellulose.
    Nicklasson F; Johansson B; Alderborn G
    Eur J Pharm Sci; 1999 Feb; 7(3):221-31. PubMed ID: 9845809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastic flow during compression of directly compressible fillers and its effect on tablet strength.
    David ST; Augsburger LL
    J Pharm Sci; 1977 Feb; 66(2):155-9. PubMed ID: 839407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of compaction properties and interfacial topography on the performance of bilayer tablets.
    Kottala N; Abebe A; Sprockel O; Akseli I; Nikfar F; Cuitiño AM
    Int J Pharm; 2012 Oct; 436(1-2):171-8. PubMed ID: 22728259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensile stresses generated in pharmaceutical tablets by opposing compressive line loads.
    Drake KR; Newton JM; Mokhtary-Saghafi S; Davies PN
    Eur J Pharm Sci; 2007 Mar; 30(3-4):273-9. PubMed ID: 17194580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensile and shear methods for measuring strength of bilayer tablets.
    Chang SY; Li JX; Sun CC
    Int J Pharm; 2017 May; 523(1):121-126. PubMed ID: 28284920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new brittleness index for compacted tablets.
    Sonnergaard JM
    J Pharm Sci; 2013 Dec; 102(12):4347-52. PubMed ID: 24258281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The determination of the mechanical strength of tablets of different shapes.
    Davies PN; Worthington HE; Podczeck F; Newton JM
    Eur J Pharm Biopharm; 2007 Aug; 67(1):268-76. PubMed ID: 17329086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the effect of environmental history on bilayer tablet interfacial shear strength.
    Klinzing G; Zavaliangos A
    Pharm Res; 2013 May; 30(5):1300-10. PubMed ID: 23334778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bending strength of tablets with a breaking line--Comparison of the results of an elastic and a "brittle cracking" finite element model with experimental findings.
    Podczeck F; Newton JM; Fromme P
    Int J Pharm; 2015 Nov; 495(1):485-499. PubMed ID: 26363109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights on the role of excipients and tablet matrix porosity on aspirin stability.
    Veronica N; Liew CV; Heng PWS
    Int J Pharm; 2020 Apr; 580():119218. PubMed ID: 32165224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.