BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16950829)

  • 1. Co-occurrence of the multicopper oxidases tyrosinase and laccase in lichens in sub-order peltigerineae.
    Laufer Z; Beckett RP; Minibayeva FV
    Ann Bot; 2006 Nov; 98(5):1035-42. PubMed ID: 16950829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of laccases in lichenized ascomycetes of the Peltigerineae.
    Laufer Z; Beckett RP; Minibayeva FV; Lüthje S; Böttger M
    Mycol Res; 2006 Jul; 110(Pt 7):846-53. PubMed ID: 16797954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Laccase and tyrosinase activities in lichens].
    Zavarzina AG; Zavarzin AA
    Mikrobiologiia; 2006; 75(5):630-41. PubMed ID: 17091585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in the use of tyrosinase and laccase in environmental applications.
    Ba S; Vinoth Kumar V
    Crit Rev Biotechnol; 2017 Nov; 37(7):819-832. PubMed ID: 28330374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of tyrosinase and accompanying laccase from Amorphophallus campanulatus.
    Paranjpe PS; Karve MS; Padhye SB
    Indian J Biochem Biophys; 2003 Feb; 40(1):40-5. PubMed ID: 22900290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases.
    Sanchez-Amat A; Solano F
    Biochem Biophys Res Commun; 1997 Nov; 240(3):787-92. PubMed ID: 9398646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laccases produced by lichens of the order Peltigerales.
    Lisov AV; Zavarzina AG; Zavarzin AA; Leontievsky AA
    FEMS Microbiol Lett; 2007 Oct; 275(1):46-52. PubMed ID: 17681009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosinase and laccase-producing Bacillus aryabhattai TFG5 and its role in the polymerization of phenols.
    Muniraj I; Shameer S; Uthandi S
    BMC Microbiol; 2021 Jun; 21(1):187. PubMed ID: 34157975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Studies of the Inhibitory Effect of Hydroxylated Phenylpropanoids and Biphenols Derivatives on Tyrosinase and Laccase Enzymes.
    Dettori MA; Fabbri D; Dessì A; Dallocchio R; Carta P; Honisch C; Ruzza P; Farina D; Migheli R; Serra PA; Pantaleoni RA; Fois X; Rocchitta G; Delogu G
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32545293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol.
    Sugumaran M; Bolton JL
    Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential tissue distribution and specificity of phenoloxidases from the Pacific oyster Crassostrea gigas.
    Luna-Acosta A; Thomas-Guyon H; Amari M; Rosenfeld E; Bustamante P; Fruitier-Arnaudin I
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Aug; 159(4):220-6. PubMed ID: 21575740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Location and catalytic characteristics of a multipotent bacterial polyphenol oxidase.
    Fernández E; Sanchez-Amat A; Solano F
    Pigment Cell Res; 1999 Oct; 12(5):331-9. PubMed ID: 10541043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laccase-like activity in the hemolymph of Venerupis philippinarum: characterization and kinetic properties.
    Le Bris C; Paillard C; Stiger-Pouvreau V; Guérard F
    Fish Shellfish Immunol; 2013 Dec; 35(6):1804-12. PubMed ID: 24075997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laccase- and peroxidase-free tyrosinase production by isolated microbial strain.
    Sambasiva Rao KR; Tripathy NK; Mahalaxmi Y; Prakasham RS
    J Microbiol Biotechnol; 2012 Feb; 22(2):207-14. PubMed ID: 22370350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the mechanism of laccase and tyrosinase in wheat bread making.
    Selinheimo E; Autio K; Kruus K; Buchert J
    J Agric Food Chem; 2007 Jul; 55(15):6357-65. PubMed ID: 17602567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding new enzymes from bacterial physiology: a successful approach illustrated by the detection of novel oxidases in Marinomonas mediterranea.
    Sanchez-Amat A; Solano F; Lucas-Elío P
    Mar Drugs; 2010 Mar; 8(3):519-41. PubMed ID: 20411113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A caution about the azide inhibition of enzymes associated with electrophilic metabolites.
    Sugumaran M
    Biochem Biophys Res Commun; 1995 Jul; 212(3):834-9. PubMed ID: 7626118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenol-oxidizing enzymes: mechanisms and applications in biosensors.
    Peter MG; Wollenberger U
    EXS; 1997; 80():63-82. PubMed ID: 9002207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First evidence of laccase activity in the Pacific oyster Crassostrea gigas.
    Luna-Acosta A; Rosenfeld E; Amari M; Fruitier-Arnaudin I; Bustamante P; Thomas-Guyon H
    Fish Shellfish Immunol; 2010 Apr; 28(4):719-26. PubMed ID: 20109560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melanosis in Penaeus monodon: Involvement of the Laccase-like Activity of Hemocyanin.
    Bris CL; Cudennec B; Dhulster P; Drider D; Duflos G; Grard T
    J Agric Food Chem; 2016 Jan; 64(3):663-70. PubMed ID: 26671070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.