These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Characterization of a cytotoxic pilin subunit of Xenorhabdus nematophila. Khandelwal P; Bhatnagar R; Choudhury D; Banerjee N Biochem Biophys Res Commun; 2004 Feb; 314(4):943-9. PubMed ID: 14751223 [TBL] [Abstract][Full Text] [Related]
4. A novel pilin subunit from Xenorhabdus nematophila, an insect pathogen, confers pest resistance in tobacco and tomato. Kumari P; Mahapatro GK; Banerjee N; Sarin NB Plant Cell Rep; 2015 Nov; 34(11):1863-72. PubMed ID: 26164296 [TBL] [Abstract][Full Text] [Related]
5. Type 1 fimbriae of insecticidal bacterium Xenorhabdus nematophila is necessary for growth and colonization of its symbiotic host nematode Steinernema carpocapsiae. Chandra H; Khandelwal P; Khattri A; Banerjee N Environ Microbiol; 2008 May; 10(5):1285-95. PubMed ID: 18279345 [TBL] [Abstract][Full Text] [Related]
6. Unique organization and regulation of the mrx fimbrial operon in Xenorhabdus nematophila. He H; Snyder HA; Forst S Microbiology (Reading); 2004 May; 150(Pt 5):1439-1446. PubMed ID: 15133105 [TBL] [Abstract][Full Text] [Related]
7. The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. Vigneux F; Zumbihl R; Jubelin G; Ribeiro C; Poncet J; Baghdiguian S; Givaudan A; Brehélin M J Biol Chem; 2007 Mar; 282(13):9571-9580. PubMed ID: 17229739 [TBL] [Abstract][Full Text] [Related]
8. Two distinct hemolytic activities in Xenorhabdus nematophila are active against immunocompetent insect cells. Brillard J; Ribeiro C; Boemare N; Brehélin M; Givaudan A Appl Environ Microbiol; 2001 Jun; 67(6):2515-25. PubMed ID: 11375158 [TBL] [Abstract][Full Text] [Related]
9. Surface antigens of Xenorhabdus nematophila (F. Enterobacteriaceae) and Bacillus subtilis (F. Bacillaceae) react with antibacterial factors of Malacosoma disstria (C. Insecta: O. Lepidoptera) hemolymph. Giannoulis P; Brooks CL; Dunphy GB; Niven DF; Mandato CA J Invertebr Pathol; 2008 Mar; 97(3):211-22. PubMed ID: 18048054 [TBL] [Abstract][Full Text] [Related]
10. The properties of Bacillus cereus hemolysin II pores depend on environmental conditions. Andreeva ZI; Nesterenko VF; Fomkina MG; Ternovsky VI; Suzina NE; Bakulina AY; Solonin AS; Sineva EV Biochim Biophys Acta; 2007 Feb; 1768(2):253-63. PubMed ID: 17173854 [TBL] [Abstract][Full Text] [Related]
11. Importance of polarity of the α4-α5 loop residue-Asn(166) in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: implications for ion permeation and pore opening. Juntadech T; Kanintronkul Y; Kanchanawarin C; Katzenmeier G; Angsuthanasombat C Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):319-27. PubMed ID: 24120447 [TBL] [Abstract][Full Text] [Related]
12. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase A(2). Shrestha S; Kim Y J Invertebr Pathol; 2007 Sep; 96(1):64-70. PubMed ID: 17395196 [TBL] [Abstract][Full Text] [Related]
13. Interaction of the bacteria Xenorhabdus nematophila (Enterobactericeae) and Bacillus subtilis (Bacillaceae) with the hemocytes of larval Malacosoma disstria (Insecta: Lepidoptera: Lasiocampidae). Giannoulis P; Brooks CL; Dunphy GB; Mandato CA; Niven DF; Zakarian RJ J Invertebr Pathol; 2007 Jan; 94(1):20-30. PubMed ID: 17022997 [TBL] [Abstract][Full Text] [Related]
14. Identification of a hemolysin from Actinobacillus pleuropneumoniae and characterization of its channel properties in planar phospholipid bilayers. Lalonde G; McDonald TV; Gardner P; O'Hanley PD J Biol Chem; 1989 Aug; 264(23):13559-64. PubMed ID: 2474533 [TBL] [Abstract][Full Text] [Related]
15. Purification and characterization of a pore-forming protein from the marine sponge Tethya lyncurium. Mangel A; Leitão JM; Batel R; Zimmermann H; Müller WE; Schröder HC Eur J Biochem; 1992 Dec; 210(2):499-507. PubMed ID: 1281099 [TBL] [Abstract][Full Text] [Related]
16. A novel secreted protein toxin from the insect pathogenic bacterium Xenorhabdus nematophila. Brown SE; Cao AT; Hines ER; Akhurst RJ; East PD J Biol Chem; 2004 Apr; 279(15):14595-601. PubMed ID: 14707137 [TBL] [Abstract][Full Text] [Related]
17. Characteristics and Function of the Chitin Binding Protein from Liu J; Song P; Zhang J; Nangong Z; Liu X; Gao Y; Wang Q Protein Pept Lett; 2019 Jul; 26(6):414-422. PubMed ID: 30919769 [TBL] [Abstract][Full Text] [Related]
18. Pore formation of thermostable direct hemolysin secreted from Vibrio parahaemolyticus in lipid bilayers. Takahashi A; Yamamoto C; Kodama T; Yamashita K; Harada N; Nakano M; Honda T; Nakaya Y Int J Toxicol; 2006; 25(5):409-18. PubMed ID: 16940013 [TBL] [Abstract][Full Text] [Related]
19. Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Brown SE; Cao AT; Dobson P; Hines ER; Akhurst RJ; East PD Appl Environ Microbiol; 2006 Feb; 72(2):1653-62. PubMed ID: 16461722 [TBL] [Abstract][Full Text] [Related]
20. Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins mixed with Xenorhabdus nematophila. BenFarhat D; Dammak M; Khedher SB; Mahfoudh S; Kammoun S; Tounsi S J Invertebr Pathol; 2013 Sep; 114(1):71-5. PubMed ID: 23747825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]